Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Computation-in-memory architecture based on resistive devices

Objective

"The MNEMOSENE project aims at demonstrating a new computation-in-memory (CIM) based on resistive devices together with its required programming flow and interface. To develop the new architecture, the following scientific and technical objectives will be targeted:

• Objective 1: Develop new algorithmic solutions for targeted applications for CIM architecture.
• Objective 2: Develop and design new mapping methods integrated in a framework for efficient compilation of the new algorithms into CIM macro-level operations; each of these is mapped to a group of CIM tiles.
• Objective 3: Develop a macro-architecture based on the integration of group of CIM tiles, including the overall scheduling of the macro-level operation, data accesses, inter-tile communication, the partitioning of the crossbar, etc.
• Objective 4: Develop and demonstrate the micro-architecture level of CIM tiles and their models, including primitive logic and arithmetic operators, the mapping of such operators on the crossbar, different circuit choices and the associated design trade-offs, etc.
• Objective 5: Design a simulator (based on calibrated models of memristor devices & building blocks) and FPGA emulator for the new architecture (CIM device combined with conventional CPU) in order demonstrate its superiority. Demonstrate the concept of CIM by performing measurements on fabricated crossbar mounted on a PCB board.

A demonstrator will be produced and tested to show that the storage and processing can be integrated in the same physical location to improve energy efficiency and also to show that the proposed accelerator is able to achieve the following measurable targets (as compared with a general purpose multi-core platform) for the considered applications:

• Improve the energy-delay product by factor of 100X to 1000X
• Improve the computational efficiency (#operations / total-energy) by factor of 10X to 100X
• Improve the performance density (# operations per area) by factor of 10X to 100X"

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

RIA - Research and Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-ICT-2016-2017

See all projects funded under this call

Coordinator

TECHNISCHE UNIVERSITEIT DELFT
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 763 636,25
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 763 636,25

Participants (8)

My booklet 0 0