Project description
Big Data analytics for Earth observation will open a new window on our planet
Big Data is affecting almost every area of science and technology, offering both opportunities for greater insight and challenges in acquiring and interpreting it. This holds true for Copernicus, the EU’s Earth observation programme. Copernicus is continuously acquiring a tremendous amount of data about our planet from both satellites and non-space systems and providing information services that are free and openly accessible. The EU-funded ExtremeEarth project is developing the remote sensing and AI techniques to extract information and insight from the mind-boggling volume of Copernicus data, shedding new light on our planet with applications in many areas from food security to climate change.
Objective
Copernicus is the European program for monitoring the Earth. The geospatial data produced by the Sentinel satellites puts Copernicus at the forefront of the Big Data paradigm, giving rise to all the relevant challenges: volume, velocity, variety, veracity and value. ExtremeEarth concentrates on developing the technologies that will make Europe a pioneer in the area of Extreme Earth Analytics i.e. the Remote Sensing and Artificial Intelligence techniques that are needed for extracting information and knowledge out of the petabytes of Copernicus data. The ExtremeEarth consortium consists of Remote Sensing and Artificial Intelligence researchers and technologists with outstanding scientific track records and relevant commercial expertise. The research and innovation activities undertaken in ExtremeEarth will significantly advance the frontiers in Big Data, Earth Analytics and Deep Learning for Copernicus data and Linked Geospatial Data, and make Europe the top player internationally in these areas. The ExtremeEarth technologies will be demonstrated in two use cases with societal, environmental and financial value: the Food Security use case and the Polar use case. ExtremeEarth will bring together the Food Security and Polar communities, and will work with them to develop technologies that can be used by these communities in the respective application areas. The results of ExtremeEarth will be exploited commercially by the industrial partners of the consortium.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences data science big data
- engineering and technology environmental engineering remote sensing
- natural sciences computer and information sciences artificial intelligence machine learning deep learning
- natural sciences computer and information sciences data science data processing
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-ICT-2018-20
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
10 561 ATHINA
Greece
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.