Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Neuromrophic Quantum Computing

Project description

Neural networks could soon be running on quantum hardware

Artificial neural networks, which simulate the way the human brain analyses and processes information, are used to model complex patterns and prediction problems. This approach typically involves building software rather than creating hardware that mimics neurons. The EU-funded Quromorphic project plans to implement neuromorphic computing on the hardware level. The project aims to build the first dedicated neural network computer that works on quantum mechanics principles. It will be built in hardware made of superconducting electrical circuits. Neuromorphic quantum hardware could possibly outperform classical von Neumann architectures as it can be trained on multiple batches of real-world data in parallel.

Objective

The Quromorphic project will introduce human brain inspired hardware with quantum functionalities: It will build superconducting quantum neural networks to develop dedicated, neuromorphic quantum machine learning hardware, which can, in its next generation, outperform classical von Neumann architectures. This breakthrough will combine two cutting edge developments in information processing, machine learning and quantum computing, into a radically new technology. In contrast to established machine learning approaches that emulate neural function in software on conventional von Neumann hardware, neuromorphic quantum hardware can offer a significant advantage as it can b e trained on multiple batches of real world data in parallel. This feature is expected to lead to a quantum advantage. Moreover, our approach of implementing neuromorphic quantum hardware is very promising since there exist indications that a quantum advantage in machine learning can already be achieved with moderate fault tolerance. In a longer term perspective neuromorphic hardware architectures will become extremely important in both, classical and quantum computing, particularly for distributed and embedded computing tasks, where the vast scaling of existing architectures does not provide a long-term solution. Quromorphic aims to provide proof of concept demonstrations of this new technology and a roadmap for the path towards its exploitation. To achieve this breakthrough, we will implement two classes of quantum neural networks that have immediate applications in quantum machine learning, feed forward networks and non-equilibrium quantum annealers. This effort will be completed by the development of strategies for scaling the devices to the threshold where they will surpass the capabilities of existing machine learning technology and achieve quantum advantage. In preparation for future exploitation of this new technology, we will run simulations to explore its application to real world problems.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

RIA - Research and Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-FETOPEN-2018-2020

See all projects funded under this call

Coordinator

FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN-NUERNBERG
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 612 482,50
Address
FREYESLEBENSTRAßE 1
91058 ERLANGEN
Germany

See on map

Region
Bayern Mittelfranken Erlangen, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 612 482,50

Participants (7)

My booklet 0 0