Objective
1. How is the concentration, stability and fate of aggregates influenced by the transformations of organic matter, advected from river and human sources ?
2. How can formation, sedimentation and resuspension of particles be parameterized and incorporated into numerical hydrodynamic models ?
3. What is the importance of microbiological processes (primary production, bacterial mineralization, protozoan grazing) for the geochemistry of the system; what are the specific characteristics of the microbial loop on the aggregates; how do they affect the dynamics of the aggregates ?
4. How do the biological processes at higher trophic levels (selective grazing and manipulation of particles in the water column and upper layers of the sediment) affect the particle dynamics. Conversely, what is the influence of the geochemical environment on these processes ?
As transition zones between land and sea, estuaries can play an important role in storing, transforming, consuming and producing organic matter and nutrients. The most active, and most peculiar site of these transformations is the maximum turbidity zone in the low salinity range of tidal estuaries. The role of biological processes in the formation and subsequent utilization of particles in the maximum turbidity zone will be studied in three European estuaries : Gironde, Schelde and Elbe. Special attention will be given to organic matter and biological processes acting on it. Nutrients and trace elements will be considered insofar as they are regulating biological processes in the estuary. Numerical modelling of water and suspended matter transport is an integrated part of the project.
In general, research will be focused around six joint field campaigns. Each estuary will be sampled during one week in 1993 and in 1994 during which two longitudinal transects along the river and estuary will be made, as well as frequent measurements at one anchor station. Field enclosures will be adapted to, and deployed in estuarine conditions. Transport of water, dissolved substances and particles will be described by numerical models for the three estuaries. The workprogramme is organised around four themes.
Theme 1 - Organic matter, suspended matter : Measurements of in situ floc size, particle concentration, POC, PON etc. Development of a camera for use in high turbidity environments.
Theme 2 - Hydrodynamic modelling : Adaptation of a three-dimensional water movement model for the Schelde and Gironde. Use of the existing model of the Elbe estuary.
Theme 3 - Microbiology : Measurement and localisation of bacterial biomass and activity during the joint field campaigns. Description of primary production along the estuaries. Determination of the spectral composition of the underwater light. Estimation of leaking and lysis from (salinity-)stressed phytoplankton cells. Study of the microbial loop. Study of the role of microzooplankton.
Theme 4 - Higher trophic levels : Study of the distribution and condition of mesozooplankton during the joint sampling campaigns. Measurement of zooplankton grazing rates on natural particulate matter etc. Mesocosm experiments.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences earth and related environmental sciences geochemistry
- natural sciences earth and related environmental sciences geology sedimentology
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors optical sensors
- natural sciences biological sciences microbiology
- agricultural sciences agricultural biotechnology biomass
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Data not available
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
4401 EA YERSEKE
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.