Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Fatigue modelling and fast testing methodologies to optimize part design and to boost lightweight materials deployment in chassis parts

Project description

New chassis materials could make electric vehicles 30 % lighter

The EU-funded Fatigue4Light project plans to investigate lightweight solutions adapted to the chassis part of electric vehicles that will render them up to 30 % lighter and safer. The project will introduce new materials with high fatigue performance such as advanced high-strength steels, aluminium alloys and hybrid fibre-reinforced composites; moreover, it will develop new models for predicting fatigue performance and design new methodologies for reducing material testing time. Attention will also be given to how cutting and welding processes could positively affect the overall fatigue performance of chassis components. Ultimately, six lab-scale and industrial demonstrators will be developed to validate the proposed solutions.

Objective

Fatigue4Light project aims to investigate lightweight solutions adapted to the chassis part of EV to reach a 24-30% weight reduction. This will give a 12-15% weight saving from structural vehicle weight, and also increase EV safety due to reduced sprung mass. Solutions will be based on the introduction of especially developed material solutions with high fatigue performance (AHSS, stainless steel, Al alloys and hybrid metal-FRP materials), the development of new computer modelling with high fatigue prediction accuracy and new experimental methodologies that reduce the testing time. Sustainability of the proposed solutions will be continuously considered along project through an eco-design general approach. Environmental assessments through LCA, affordability based in LCC as well as social inclusion thanks to the recovery of CRMs from alternative waste streams will allow endowing Fatigue4Light into a novelty circular dimension. Attention will be given to manufacturing processes (cutting and welding) to improve the knowledge on their effect to the overall fatigue performance of chassis components. Six lab scale and industrial demonstrators will be defined to validate the proposed solutions. The fatigue model will be verified on demonstrators and then used in a virtual testing process to assess the weight reduction potential of the proposed materials, together with a redesign process oriented to lightweight the components while ensuring structural integrity. The project will reduce lead times to market due to the developed model and advanced fatigue testing methodologies and standardization will be followed. The final outcome is to give modelling and experimental tools for the lightweighting process on chassis parts subjected to fatigue. Clear and practical guidelines will be established with respect to different factors: eco design with proposed materials, advanced modelling approaches and the influence of forming processes on part performance.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

IA - Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-LC-GV-2018-2019-2020

See all projects funded under this call

Coordinator

CENTRE INTERNACIONAL DE METODES NUMERICS EN ENGINYERIA
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 720 625,00
Address
C GRAN CAPITAN, EDIFICI C1, CAMPUS NORD UPC SN
08034 Barcelona
Spain

See on map

Region
Este Cataluña Barcelona
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 720 625,00

Participants (15)

My booklet 0 0