Project description
Advanced turbine design for maximal harvest of wind energy at high seas
Wind power is key to the EU's green future. The great ability of offshore wind turbines to generate electricity, along with the restricted potential of the onshore wind farms, increases the need to exploit wind energy in deeper waters in a sustainable manner. The EU-funded FLOATECH project will develop a set of innovative production and monitoring tools to reduce the uncertainties in the design process of floating wind turbines. FLOATECH aims to provide more advanced, trustworthy and cost-effective floating wind turbines, leading to an increase of the actual energy yield of floating wind farms.
Objective
Wind is one of the leading sources of renewables contributing to EU energy mix, and its exploitation is pivotal to meet many of next environmental and energy policy goals. Europe being one of the world technological leaders, its wind energy sector has evolved into an important industry providing hundreds of thousands of jobs. Due to the limitations of available installation sites onshore, offshore wind is becoming crucial to ensure the further growth of the sector. In this scenario, exploiting the vast wind resources in deeper waters using floating wind farms and developing the required technology will enhance EUs economy and will contribute to achieve its green energy goals.
FLOATECH aims at stimulating this transition by increasing the technical maturity and the cost competitiveness of floating offshore wind energy. This will be achieved by two types of actions. On the one hand, a fully-coupled, aero-hydro-servo-elastic design and simulation environment (named QBlade-Ocean) will be developed. The more advanced modelling theories will lead to a reduction of the uncertainties in the design process and then to more efficient, reliable and cost-effective floating wind turbines. On the other hand, two innovative control techniques will be introduced, i.e. the Active Wave-based feed-forward Control and the Active Wake Mixing, which will lead to an increase of the actual energy yield of floating wind farms. Wave tank and wind tunnel experiments, as well as the application to a utility-size floating wind turbine are foreseen as validation and demonstration methods.
The consortium comprises five public research institutions with relevant skills in the field of offshore floating wind energy, and three industrial partners, two of which have been involved in the most recent developments of floating wind systems. An innovation advisory board including stakeholders such as certifiers, research and business networks will support the dissemination of the project results.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.3. - SOCIETAL CHALLENGES - Secure, clean and efficient energy
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3.3.2. - Low-cost, low-carbon energy supply
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-LC-SC3-2018-2019-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
10623 Berlin
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.