Project description
Future 6G created by user-centric AI
5G cellular technology is already up and running, increasing speed and improving flexibility of wireless services. The next step is to design new disruptive technologies enabling mixed-reality, super-physical experiences in 6G systems. This could be made possible using digital twins, seamlessly connecting and controlling physical or biological entities. The EU-funded CENTRIC project proposes to design the future 6G by creating the user-centric AI Air Interface. It will leverage AI techniques to provide a top-down modular approach to wireless connectivity that focuses on users' communication needs and environmental limitations. CENTRIC will be crucial for future self-driving vehicles, the internet of nano bio-things or multi-sensory holographic communications.
Objective
CENTRIC proposes to leverage Artificial Intelligence (AI) techniques through a top-down, modular approach to wireless connectivity that puts the users’ communication needs and environmental constraints at the center of the network stack design. It all starts with the users’ objectives and application-specific requirements. Then, AI techniques are used to create and customize tailor-made waveforms, transceivers, signaling, protocols and RRM procedures to support these requirements. This is the user-centric AI Air Interface (AI-AI) that CENTRIC will enable. To guarantee that CENTRIC’s AI-AI can be implemented in practice, we will also explore and develop innovative hardware computing substrates with realistic and AI-AI-compatible energy-efficiency properties. This includes novel electronics such as neuromorphic computing and mixed analog-digital platforms. CENTRIC will make this possible by advancing theory, algorithms, hardware co-design, and training and monitoring environments based on digital twins. We will focus on providing the desired quality of experience (QoE) to a given user, or type of users, while optimizing spectrum usage, minimizing energy consumption and guaranteeing EMF compliance. The results of CENTRIC will be validated and demonstrated in laboratory prototypes and its breakthroughs will enable future 6G use-cases, such as self-driving vehicles, the internet of nano bio-things, or multi-sensory holographic communications.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.4 - Digital, Industry and Space
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-JU-RIA - HORIZON JU Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-JU-SNS-2022
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
69123 HEIDELBERG
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.