Project description
The potential of NIR-emitting silver nanoclusters
The nanoscale holds potential for breakthroughs in science and technology, but stability challenges limit the use of atomically precise metal clusters. This is evident in silver nanoclusters, where their exceptional properties are hindered by a lack of robust stabilisation methods. DNA, a biocompatible and versatile scaffold, offers a promising solution, allowing for tunable emission colours and high photoluminescence efficiencies. However, the development of near-infrared (NIR) emitting DNA-stabilised silver nanoclusters (Ag-DNAs) faces hurdles, including limited structural data, unclear design strategies, and a lack of understanding of their luminescent behaviour. Supported by the Marie Skłodowska-Curie Actions programme, the project will synthesise NIR-emitting Ag-DNAs using advanced techniques, aiming to establish a structure-luminescence rationale. This foundational knowledge will enable tailored designs.
Objective
The interest in atomically precise metal cluster systems has grown over the last decades due to the physicochemical properties that emerge at the nanoscale compared to the bulk regime. Despite promising features, stability often hinders their use in real-life applications. Since stabilization is critical, DNA has been proven to be a functional and versatile scaffold for luminescent silver clusters. DNA oligomers are intrinsically biocompatible and are able to tune the emission color and promote high photoluminescence efficiencies.
Near-infrared emitting DNA-stabilized silver nanoclusters (NIR-emitting Ag-DNAs) are promising candidates for several potential applications, such as bioimaging and sensing, due to improved cell and tissue penetration of NIR light. The development of NIR emissive Ag-DNAs currently needs to be improved by three main challenges: extremely limited structural information (only one is available), absence of a rationale for designing NIR-emitting Ag-DNAs with high luminescence yield, and poor understanding of
This project aims to address these gaps by first synthesizing and screening a wealth of NIR-emitting Ag-DNAs and then employing state-of-the-art techniques, such as pair distribution function analysis and X-ray absorption spectroscopy, to characterize the best-performing candidates structurally.
Establishing a structure-luminescence rationale for NIR-emitting Ag-DNAs will be the ultimate goal of the project. Such findings are paramount to performing electronic structure calculations, and it is the needed input for machine learning algorithms to predict NIR-emitting Ag-DNAs with tailored optical properties. The results of this proposal will thus pave the way for a myriad of different applications.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering colors
- natural sciences biological sciences genetics DNA
- natural sciences chemical sciences inorganic chemistry transition metals
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2023-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1165 KOBENHAVN
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.