Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Software for Efficient and Energy-Aware Supercomputers

Objective

SEANERGYS creates an integrated European software solution that optimises the operation of supercomputers. In doing so, it addresses four different objectives: reducing the amount of energy used for real-world workload mixes as the primary objective, optimising resource utilisation, enhancing system throughput and reducing response time as secondary objectives. Since these objectives can conflict with each other, site-specific policies define the weights attached to each, and the SEANERGYS SW suite will tailor system operation towards the combined optimum. Possible scenarios include improving the throughput of HPC systems, generating more R&D results for a given energy budget, or produce a fixed set of R&D results with less energy, while striving to keep response times constant. The solution consists of a comprehensive monitoring infrastructure (CMI), an Artificial Intelligence data analytics system (AIDAS), and a dynamic scheduling and resource management system (DSRM).
The CMI gathers data from hardware and software sensors, and correlates it with scheduler information to identify jobs that do not fully utilize allocated resources. Users receive automatic feedback on energy and resource use for each run, plus information on how to optimize these. The DAIS leverages AI models trained with a vast set of operational data of the participating HPC sites. It fingerprints resource usage patterns, predicts future job behaviour, and identifies complementary job profiles for potential co-scheduling. Finally, the DSRM utilizes these insights to develop scheduling policies that maximize resource utilization and energy efficiency, and supports jobs/applications with dynamic and adaptable resource profiles.
The SEANERGYS solution will be ready for deployment up to Exascale level. To ensure production-quality, the project builds on results from European projects, the competency of well-established research groups and companies, and widely used open-source codes. These are input for an integrated software system that achieves the functionality, performance and stability needed by European HPC centres, defined by KPIs and acceptance criteria and processes established at the project start. An agile, professional software development method will leverage a modern DevOps framework and strive to provide end-to-end traceability by linking and tracking requirements, interface, functional and performance specifications, code design and development steps, and validation/verification throughout the development lifecycle. Validation/verification measures will include code reviews, automated SW quality analysis, unit and integration tests and a verification suite. The project will implement a staged testing and validation process, with functionality tests on single-nodes, scaling tests on mid-sized platforms, and finally acceptance tests on production supercomputers.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-JU-RIA - HORIZON JU Research and Innovation Actions

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-EUROHPC-JU-2023-ENERGY-04

See all projects funded under this call

Coordinator

FORSCHUNGSZENTRUM JULICH GMBH
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 855 196,88
Address
WILHELM JOHNEN STRASSE
52428 JULICH
Germany

See on map

Region
Nordrhein-Westfalen Köln Düren
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 3 710 393,75

Participants (14)

Partners (1)

My booklet 0 0