Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Role of Epithelial Apoptotic Force in Morphogenesis

Project description

The dynamic role of dying cells in morphogenesis

During development, ordered patterns and the final body plan are formed in a cascade of processes collectively called morphogenesis. Apoptosis, or programmed cell death, is considered a way to eliminate unwanted cells, supporting morphogenesis passively. Recent studies suggest that apoptotic cells may play an important dynamic role during morphogenesis, but the mechanisms are unknown. Funded by the European Research Council, the EPAF project will attempt to determine the cellular mechanisms behind the recent discovery that apoptotic cells produce a pulling force on epithelial cells in the Drosophila developing leg, leading to epithelial folding. Project researchers will then compare apoptotic dynamics to other cell extrusion processes such as epithelial-mesenchymal transition to investigate similarities and differences.

Objective

Contrary to previous beliefs, recent studies have suggested that apoptotic cells play an important dynamic role during morphogenesis. Nonetheless, the mechanisms whereby dying cells drive tissue shape modification remain elusive.
Using the Drosophila developing leg as a model system to study apoptosis-dependent epithelium folding, we have recently shown that apoptotic cells produce a pulling force through the unexpected maintenance of their adherens junctions that serves as an anchor to an apico-basal Myosin II cable. The resulting apoptotic apico-basal force leads to a non-autonomous increase in tissue tension and apical constriction of surrounding cells, leading to epithelium folding. These results reveal that, far from being passively eliminated as generally thought, dying cells are very active until the end of the apoptotic process. The objective of the present proposal is to understand how apoptotic cells influence their surroundings from the micro-environment to the macro-scale level.
Our first aim is to dissect the cellular mechanisms governing the generation of the apoptotic force and its transmission to the tissue, both apically through planar polarity and basally through the extra-cellular matrix (ECM), in parallel with the identification of the network of genes orchestrating apoptosis-dependent morphogenesis through a powerful genetic screen. Interesting preliminary results have already identified the epithelio-mesenchymal-transition gene Snail as essential for the progression of apoptosis, thus validating our approach.
Therefore, the second aim of this project is to compare Snail function in the control of adhesion and ECM dynamics and in the generation of tissue tension in both EMT and apoptosis. This original comparative study should bring novel insight into these two fundamental processes.

To perform this work, we will use elegant genetic tools combined to state-of-the-art live imaging techniques, together with robust biophysical modelling.

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2014-CoG

See all projects funded under this call

Host institution

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 311 843,75
Address
RUE MICHEL ANGE 3
75794 Paris
France

See on map

Region
Ile-de-France Ile-de-France Hauts-de-Seine
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 311 843,75

Beneficiaries (1)

My booklet 0 0