Project description
A toolbox of control systems to accelerate synthetic biology innovation
Nature has developed tremendously diverse and efficient mechanisms to accomplish all sorts of tasks, and the control mechanisms over these mechanisms are equally diverse. Although the engineering of biological systems and processes is providing advances that improve human quality of life in a sustainable way, the full potential has not been exploited due mostly to the challenges of artificially controlling the dynamic behaviour of these biophysical systems. The EU-funded COSY-BIO project aims to build on control engineering principles to develop three different types of ‘controllers: external (a computer), embedded (integrated into cells) and multicellular (separate cell populations that control other cells). The tools will be accompanied by a rapid prototyping platform.
Objective
Synthetic Biology aims at rational engineering of living organisms to improve human well-being and environmental sustainability, thus promising a paradigm shift in human technology. Its full potential has not been achieved yet because of the complexity of engineering biological systems where basic biological parts are intrinsically noisy and not modular. The overarching goal of COSY-BIO is to develop a theoretical framework and innovative technological tools to engineer reliable biological systems that are robust despite their individual components being not by translating principles of control engineering to molecular and cell biology. Automatic control is a well-established engineering discipline to build “controllers” to steer the dynamic behaviour of a physical system in a desired fashion. By building upon control engineering for physical systems and by exploiting the unique features of living organisms, this project will identify generally applicable approaches to design closed-loop feedback controllers for biological systems. To handle biological complexity, the project will explore three strategies of increasing difficulty “external” controllers, “embedded” controllers and “multi-cellular” controllers. External controllers will be implemented in a computer acting on cells using small molecules via microfluidics devices. Embedded controllers will be made from biological parts and integrated within individual cells to steer their behaviour. Multicellular controllers envisage two cell populations, one made up of cells with embedded controllers (controller cells) and the other will be the controlled population (target cells). In addition, a rapid prototyping platform will enable to speed up the design-build-test cycles by means of optimal experimental design, microfluidics and cell-free systems. Proof-of-principles demonstrations in bacteria and yeast with relevance to biotechnology will be tackled to prove the usefulness of this revolutionary technology.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences classical mechanics fluid mechanics microfluidics
- natural sciences biological sciences microbiology bacteriology
- natural sciences biological sciences synthetic biology
- natural sciences biological sciences cell biology
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering control engineering
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.2.1. - FET Open
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FETOPEN-2016-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
00185 Roma
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.