Objective
Genome instability is a hallmark of cancer and is caused by the accumulation of DNA damage. Genome integrity is preserved by DNA repair machineries that operate on a chromatin substrate where DNA wraps around histone proteins. Interestingly, point mutations in histone H3.3 in particular have been identified as drivers of tumorigenesis. Beyond their impact on gene expression, some of these mutations were recently shown to inhibit homologous recombination-mediated repair of DNA double-strand breaks (DSBs) in human cells (K36M mutation) and to contribute to replication fork stability in yeast cells (G34R mutation). Furthermore, H3.3 histones are deposited de novo at sites of DNA damage in human cells. These findings call for a more systematic characterization of the impact of H3.3 mutations on genome instability. We hypothesize that H3.3 point mutations may alter the cellular response to DNA damage, thus leading to malignant transformation. Here, we propose to test this hypothesis through a set of complementary approaches in human cell lines. We will initially examine whether H3.3 mutations affect histone deposition at DSBs and at damaged replication forks and chromatin relaxation at DSBs. Next, we will evaluate whether H3.3 mutations affect DSB repair and replication fork stability and repair, ultimately inducing genome instability. We will then evaluate the potential clinical applications of our results by testing whether H3.3 mutations may in turn impact drug sensitivity. These complementary research angles should help understanding whether H3.3 oncogenic mutations affect genome integrity independently of their impact on gene expression, providing new molecular bases for their oncogenic potential. This work might ultimately identify druggable defects that confer chemotherapeutic sensitivity to H3.3 mutated tumors, thus providing a proof-of-principle for potential targeted therapies.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences genetics DNA
- medical and health sciences clinical medicine allergology drug allergy
- natural sciences biological sciences genetics mutation
- medical and health sciences clinical medicine oncology
- natural sciences biological sciences genetics genomes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-RI - RI – Reintegration panel
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.