Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Mechanistic basis of nucleation and spreading underlying a Polycomb-mediated epigenetic switch

Project description

Research could uncover how polycomb-group proteins promote epigenetic switching

The epigenetic regulation of gene expression through polycomb-group proteins is central to the development and environmental plasticity of most eukaryotes. A class of polycomb-group proteins, PRC2 can epigenetically silence genomic sites known as nucleation regions or polycomb response elements. The EU-funded EPISWITCH project will use a well-characterised gene system, Arabidopsis FLC, to elucidate the core epigenetic switching mechanisms that this family of protein complexes puts into place. This interdisciplinary project will determine the local chromatin features that promote the epigenetic switch independently at each allele. It will also describe how DNA replication affects the transition from metastable to long-term epigenetic silencing.

Objective

Polycomb-mediated epigenetic regulation of gene expression is central to development and environmental plasticity in most eukaryotes. Polycomb Repressive Complex 2 (PRC2) is targeted to genomic sites, known as nucleation regions or Polycomb Response elements, and switches those targets to an epigenetically silenced state. But what constitutes the switching mechanism is unknown. Core epigenetic switching mechanisms have proven difficult to elucidate due to the complex molecular feedbacks involved. We will exploit a well-characterized gene system, Arabidopsis FLC, to address a central question – what are the core events that constitute a Polycomb switch?

Our hypothesis is that the epigenetic switch involves stochastic conformationally-induced oligomerization, generating an ordered protein assembly of PRC2 accessory proteins and PRC2, that is then robustly distributed onto both daughter strands during DNA replication through self-templating feedback mechanisms. We will determine the local chromatin features that promote the epigenetic switch independently at each allele (i.e. in cis). We will also dissect the involvement of DNA replication in the transition from metastable to long-term epigenetic silencing, associated with the Polycomb complex spreading across the body of the locus.

This interdisciplinary proposal combines molecular genetics/biology, computational biology, with structural biology, achieved through close working relationships with Prof. Martin Howard (John Innes Centre), Dr Mariann Bienz (MRC Laboratory of Molecular Biology, Cambridge) and Dr Julian Sale, (MRC Laboratory of Molecular Biology, Cambridge). This blue-sky programme aims to provide important new concepts in Polycomb-mediated epigenetic switching mechanisms, important for the whole epigenetics field.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-ADG - Advanced Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2018-ADG

See all projects funded under this call

Host institution

JOHN INNES CENTRE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 101 325,00
Address
NORWICH RESEARCH PARK COLNEY
NR4 7UH NORWICH
United Kingdom

See on map

Region
East of England East Anglia Breckland and South Norfolk
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 101 325,00

Beneficiaries (1)

My booklet 0 0