Project description
An unprecedented experimental platform could spur progress in quantum computing
Quantum bits, or qubits, can store and process so much more information that a conventional bit because they can be in two states at the same time. Unfortunately, these quantum effects are very fragile, and any external influences can cause the qubit to 'collapse'. Scientists are now talking about topological quantum computers that will encode their qubits in a type of quasiparticle we are not even sure exists. The so-called topological properties of these quasiparticles make them particularly robust to outside interference. The EU-funded TOCINA project is developing a novel experimental platform that will enable scientists to explore these foundations in ways not previously possible.
Objective
The key challenge in quantum computation is decoherence - the collapse of a quantum state due to local perturbations. In this proposal we address this challenge by developing a new nanomaterials system, which forms the core of a future topological quantum computer. In a topological quantum bit, information is encoded in Majorana modes, which are topologically protected by a local symmetry and therefore have long coherence times.
In this project we develop a new state of matter -topological crystalline insulator nanowires- in which the topology is defined by the band inversion and the crystal symmetry of the material. Therefore, these topological states should be exceptionally robust. Further, we integrate strong superconductors on these nanowires. These two features together should increase the energy scales of the system compared to current state-of-the-art devices, and therefore lead to stable and electrically-isolated Majorana states.
In this project we develop new crystal growth strategies, which enable to grow out-of-thermodynamic equilibrium structures. We will be the first to employ Molecular Beam Epitaxy (MBE) to precisely tune the SnTe nanowire growth conditions. We use the directionality offered by MBE to shadow-grow superconductors on one nanowire facet. The in-situ ultra-high-vacuum growth of hybrid semiconductor/superconductor devices will result in unprecedented device quality.
Due to the increased energy scales, experiments, which have been unattainable so far, come within reach. We use this new materials platform to demonstrate entanglement of two Majorana modes at the ends of a nanowire. This quantum teleportation is a groundbreaking experiment and is the key of a topological quantum computer.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering crystals
- natural sciences mathematics pure mathematics topology
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- natural sciences physical sciences electromagnetism and electronics superconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
5612 AE Eindhoven
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.