Descripción del proyecto
Una plataforma experimental sin precedentes podría estimular el progreso en la computación cuántica
Los bits cuánticos, o cúbits, pueden almacenar y procesar mucha más información que un bit convencional, dado que pueden tener dos estados al mismo tiempo. Lamentablemente, estos efectos cuánticos son muy frágiles y cualquier influencia externa puede hacer que el cúbit «colapse». Actualmente, los científicos hablan sobre los ordenadores cuánticos topológicos que codificarán sus cúbits en un tipo de cuasipartículas cuya existencia es incierta. Las denominadas propiedades topológicas de estas cuasipartículas provocan que sean particularmente robustas ante interferencias externas. El proyecto TOCINA, financiado con fondos europeos, desarrolla una nueva plataforma experimental que permitirá a los científicos explorar dichos cimientos de maneras que antes no eran posibles.
Objetivo
The key challenge in quantum computation is decoherence - the collapse of a quantum state due to local perturbations. In this proposal we address this challenge by developing a new nanomaterials system, which forms the core of a future topological quantum computer. In a topological quantum bit, information is encoded in Majorana modes, which are topologically protected by a local symmetry and therefore have long coherence times.
In this project we develop a new state of matter -topological crystalline insulator nanowires- in which the topology is defined by the band inversion and the crystal symmetry of the material. Therefore, these topological states should be exceptionally robust. Further, we integrate strong superconductors on these nanowires. These two features together should increase the energy scales of the system compared to current state-of-the-art devices, and therefore lead to stable and electrically-isolated Majorana states.
In this project we develop new crystal growth strategies, which enable to grow out-of-thermodynamic equilibrium structures. We will be the first to employ Molecular Beam Epitaxy (MBE) to precisely tune the SnTe nanowire growth conditions. We use the directionality offered by MBE to shadow-grow superconductors on one nanowire facet. The in-situ ultra-high-vacuum growth of hybrid semiconductor/superconductor devices will result in unprecedented device quality.
Due to the increased energy scales, experiments, which have been unattainable so far, come within reach. We use this new materials platform to demonstrate entanglement of two Majorana modes at the ends of a nanowire. This quantum teleportation is a groundbreaking experiment and is the key of a topological quantum computer.
Ámbito científico
- engineering and technologymaterials engineeringcrystals
- natural sciencesmathematicspure mathematicstopology
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcomputer hardwarequantum computers
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
- natural sciencesphysical scienceselectromagnetism and electronicssuperconductivity
Palabras clave
Programa(s)
Régimen de financiación
ERC-ADG - Advanced GrantInstitución de acogida
5612 AE Eindhoven
Países Bajos