Descrizione del progetto
Una piattaforma sperimentale senza precedenti potrebbe incentivare i progressi nel campo del calcolo quantistico
I bit quantistici, o qubit, sono in grado di archiviare ed elaborare molte più informazioni rispetto ai bit convenzionali poiché possono trovarsi contemporaneamente in due stati differenti. Gli effetti quantistici sono tuttavia molto fragili e qualsiasi influenza proveniente dall’esterno può provocare un «collasso» dei qubit. È attualmente in corso un dibattito tra gli scienziati in merito a computer quantici topologici in grado di codificare i propri qubit in un tipo di quasiparticella di cui non siamo neppure certi dell’esistenza. Le cosiddette proprietà topologiche di queste quasiparticelle le rendono particolarmente solide per resistere a interferenze esterne. Il progetto TOCINA, finanziato dall’UE, sta sviluppando una nuova piattaforma sperimentale che consentirà agli scienziati di esplorare queste basi di conoscenza in modi non possibili in precedenza.
Obiettivo
The key challenge in quantum computation is decoherence - the collapse of a quantum state due to local perturbations. In this proposal we address this challenge by developing a new nanomaterials system, which forms the core of a future topological quantum computer. In a topological quantum bit, information is encoded in Majorana modes, which are topologically protected by a local symmetry and therefore have long coherence times.
In this project we develop a new state of matter -topological crystalline insulator nanowires- in which the topology is defined by the band inversion and the crystal symmetry of the material. Therefore, these topological states should be exceptionally robust. Further, we integrate strong superconductors on these nanowires. These two features together should increase the energy scales of the system compared to current state-of-the-art devices, and therefore lead to stable and electrically-isolated Majorana states.
In this project we develop new crystal growth strategies, which enable to grow out-of-thermodynamic equilibrium structures. We will be the first to employ Molecular Beam Epitaxy (MBE) to precisely tune the SnTe nanowire growth conditions. We use the directionality offered by MBE to shadow-grow superconductors on one nanowire facet. The in-situ ultra-high-vacuum growth of hybrid semiconductor/superconductor devices will result in unprecedented device quality.
Due to the increased energy scales, experiments, which have been unattainable so far, come within reach. We use this new materials platform to demonstrate entanglement of two Majorana modes at the ends of a nanowire. This quantum teleportation is a groundbreaking experiment and is the key of a topological quantum computer.
Campo scientifico
- engineering and technologymaterials engineeringcrystals
- natural sciencesmathematicspure mathematicstopology
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcomputer hardwarequantum computers
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
- natural sciencesphysical scienceselectromagnetism and electronicssuperconductivity
Parole chiave
Programma(i)
Argomento(i)
Meccanismo di finanziamento
ERC-ADG - Advanced GrantIstituzione ospitante
5612 AE Eindhoven
Paesi Bassi