Project description
Improved quake recognition technology
Efforts to forecast earthquakes have been hampered for years by the lack of reliable science and technology. Intriguingly, recent advances showed that lab-engineered earthquakes can be predicted using machine learning (ML). The tremors are preceded by a cascade of micro-failure events that radiate elastic energy in a manner that foretells catastrophic failure. ML can thus predict the failure time, and in some cases, the magnitude of lab earthquakes. The EU-funded TECTONIC project will connect these results with field observations and ML to search for earthquake precursors and build predictive models for tectonic faulting. The project's multidisciplinary team aims to train the next generation of researchers in earthquake science and foster a new level of broad community collaboration.
Objective
Earthquakes represent one of our greatest natural hazards. Even a modest improvement in the ability to forecast devastating events like the 2016 sequence that destroyed the villages of Amatrice and Norcia, Italy would save thousands of lives and billions of euros. Current efforts to forecast earthquakes are hampered by a lack of reliable lab or field observations. Moreover, even when changes in rock properties prior to failure (precursors) have been found, we have not known enough about the physics to rationally extrapolate lab results to tectonic faults and account for tectonic history, local plate motion, hydrogeology, or the local P/T/chemical environment. However, recent advances show: 1) clear and consistent precursors prior to earthquake-like failure in the lab and 2) that lab earthquakes can be predicted using machine learning (ML). These works show that stick-slip failure events –the lab equivalent of earthquakes– are preceded by a cascade of micro-failure events that radiate elastic energy in a manner that foretells catastrophic failure. Remarkably, ML predicts the failure time and in some cases the magnitude of lab earthquakes. Here, I propose to connect these results with field observations and use ML to search for earthquake precursors and build predictive models for tectonic faulting.
This proposal will support acquisition and analysis of seismic and geodetic data and construction of new lab equipment to unravel earthquake physics, precursors and forecasts. I will use my background in earthquake source theory, ML, fault rheology, and geodesy to address the physics of earthquake precursors, the conditions under which they can be observed for tectonic faults and the extent to which ML can forecast the spectrum of fault slip modes. My multidisciplinary team will train the next generation of researchers in earthquake science and foster a new level of broad community collaboration.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- humanities history and archaeology history
- natural sciences earth and related environmental sciences hydrology hydrogeology
- natural sciences earth and related environmental sciences geology seismology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
00185 Roma
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.