Project description
Tiny synthetic machines may soon be toiling away in artificial and natural cells
The Industrial Revolution harnessed the power of steam to put things in motion with huge machines that propelled the world into a new era of productivity. Molecular machines may be poised to deliver the next revolution, invisibly powering novel therapeutics and nanoscale industrial processes. Molecular machines abound in nature. They are the driving force behind functions like muscle contraction, cargo movement within cells along microtubules, and the beating of cilia and flagella. Nature has inspired the scientific community with its efficient and diverse molecular machinery, and the search for novel synthetic molecular machines with exciting new applications has begun. The BIOMOLMACS training network is working on integrating molecular machines with precisely designed macromolecules for a new era in nanobiomedical applications.
Objective
The main motivation of BIOMOLMACS training network is to establish a multidisciplinary training network on the emerging topic of molecular machines and to train the next generation of highly-skilled researchers in this exciting field. In the last decade, great efforts have been spent on the development of synthetic strategies for the creation of molecular machines, and these efforts have been acknowledged by the Nobel committee in 2016. In parallel, synthetic and polymer chemistry fields have made significant advances in the last decade, to the point that we are able to design and control the sequence of individual repeat units along synthetic macromolecules. Sequence controlled polymers open up greater possibilities in the precise formation of nanoparticles such as polymersomes, and even support the new generation of artificial cells. The synthetic combination of molecular machines and precisely designed synthetic macromolecules will open new avenues for innovative nanobiomedical applications. Early Stage Researchers of BIOMOLMACS will be trained on the design, chemical synthesis, and biophysical characterization of such complex macromolecular architectures as well as their incorporation in artificial and living cells. Finally, biophysical understanding of the molecular interactions in living/synthetic systems will be able to bridge the gap between fundamental and applied research in this exciting field.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences chemical sciences polymer sciences
- engineering and technology nanotechnology nano-materials
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.1. - Fostering new skills by means of excellent initial training of researchers
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-ITN - Marie Skłodowska-Curie Innovative Training Networks (ITN)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-ITN-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
CV4 8UW COVENTRY
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.