Project description
Getting a closer look at quantum states in reactions involving ions
In classical mechanics, events like the motion of a projectile are represented by a 'state space' consisting of all the possible values of the dynamical variables characterising the state of the system, such as all the possible positions and momenta of a point particle. The behaviour of matter and light on the atomic scale is quite different. Quantum states are represented by the probabilities of each observable variable being in that state rather than by definite values. The plot thickens with the ability of a system to be in a few states simultaneously (quantum superposition). The quantum dynamics of ions (charged particles) is poorly understood, largely due to challenges associated with experimental observations and measurements. The EU-funded DoMInIon project is enhancing the resolution of quantum-state measurements for detailed insight into ion-neutral reactions in synthetic and biological systems.
Objective
Being able to clarify the atomistic dynamics of molecular collisions and chemical reactions has been a central research goal for decades. For reactions of charged particles in particular, the importance of quantum dynamics is barely understood, as quantum state-resolved experiments beyond total cross section measurement are very challenging and most theoretical descriptions still rely on quasi-classical approaches. In particular, quantum scattering resonances, known by now to be relevant in a few well-studied neutral molecule reactions, have never been observed for ion-molecule collisions up to now. In the past years we have spearheaded research on crossed-beam reactive scattering of ions with neutral molecules. Our measured differential scattering cross sections could provide detailed insight into the dynamics of polyatomic reactions and allowed us to discover several new reaction mechanisms. In this project, we propose a novel experimental approach to achieve a multifold improved resolution for the scattering images, which will allow us to answer several key questions: Which product quantum states are populated in molecular ions that are produced in three- and four-atom reactions? How do quantum scattering resonances influence the collision dynamics and the product state distribution? Which momentum vector correlations govern the three-body break-up in ion-neutral reactions and which transition states are responsible for these dynamics? How are ionic reactions contributing to the radiation damage of biological molecules in cells? Our proposed experimental approach can answer these questions and will thereby reach a new domain for the investigation of ion-molecule reactions with unprecedented quantum state control for three- and four-atom reactions and highly differential insight into polyatomic reactions.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
6020 Innsbruck
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.