European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Programme Category

Programma

Article available in the following languages:

EN

Development of flexible large fuel cell power plants for grid support

 
  • Design of a modular highly flexible MW size fuel cell power plant for dynamic P2P applications of H2 and baseload operation to be connected to the grid.
    • Next to the complete design of the FCPP, it includes the design and development of key components and validation of their performance and scale up potential, with the purpose to optimise performance and minimise Capex for a MW size system (e.g. 2 MW).
    • The Capex reduction could for example be accomplished by a reduction in the materials costs, the number of components and connections, the production steps, costs power electronics, and most importantly the development of larger fuel cell stacks.
    • The chosen concepts should be modular and integrating manufacturability approach, resulting in a design that is fit for mass production.
  • Validation via a pilot scale flexible FCPP in an industrially relevant environment and compatible with large scale manufactur

    With the Paris Climate Agreement, the need for short and long term sustainable grid support, has become more urgent than ever. A zero emission alternative for fossil fuel based (backup) power supply is needed. Excess electricity, from wind and solar renewable generation, can be converted into hydrogen and stored for re-electrification during periods of energy shortage.

    Grid operators need power supply technologies on MW scale that have fast response times and excellent load-following capabilities. With such a technology they can facilitate efficient and reliable interaction with the grid on both transmission and distribution level, and ensure energy security for end users. Flexible hydrogen fuelled fuel cell power plants (FCPP) could be perfectly suited for this purpose as, compared to other technologies, they have very high efficiency, potential for fast and effective load-following capabilities, zero emission, and can be used for both short and long term grid support (winter months). Toget

    • The proposal is expected to design and develop a modular flexible MW size FCPP for dynamic P2P applications of H2 and baseload operation for connection to the grid.
      • Capex < 1500 Euro/kW system in case of series production of MW size FCPP with total capacity of 25 MW/year (not included cost for transport, installation, project management, and utilities).
    • Development and validation of key components, in particular fuel cells, demonstrating scale up potential and Capex reduction.
      • Lifetime expectation fuel cells > 20000 h, FC efficiency > 55%, Capex FC < 450 Euro/kW stack (series production with total capacity of 25 MW/year).
    • Validation of operation flexibility and grid stabilisation capability via a pilot FCPP via fast (within seconds) response times and load following capacity over a 20-100% power range. 50% power in < 20 seconds and 100% power in < 60 seconds.