Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

(Mock) Modular Forms are Everywhere

Project description

Investigating the broken symmetry of modular forms

Modular forms are complex analytic functions that satisfy a certain kind of functional equation with respect to the group action of the modular group. They generalise classical trigonometric functions that are periodic, and they appear in algebraic topology, arithmetic geometry, combinatorics, mathematical physics, number theory and representation theory. The EU-funded ModEv project plans to investigate many examples of broken modularity, which cannot so far be clearly explained, and illustrate the modularity of q-series. The project's activities should enable researchers to predict, prove and understand modularity in various settings, particularly in moonshine, combinatorics, vertex algebras and enumerative geometry.

Objective

The main goal of this proposal is to investigate and explain modularity of q-series. Modular forms generalize classical trigonometric functions because they are periodic; however, they have more symmetries. They play a central role in many areas including algebraic topology, arithmetic geometry, combinatorics, mathematical physics, number theory, and representation theory. The situation is complicated by the fact that often modularity is broken; it is however not always a priori clear in which way. We will see several such examples of broken modularity in this proposal.

Many areas predict modularity of important functions but fail to provide a full understanding. Any progress made towards answering such questions will imply fundamental results at the frontier of number theory and other areas. The challenge that I am taking in this proposal is to push the boundaries further and to predict, prove, and understand modularity in various settings, particularly in moonshine, combinatorics, vertex algebras, and enumerative geometry.

This understanding of modularity has also wide-reaching applications to number theory.
I have many years of experience in answering modularity questions and already succeeded in proving many deep conjectures and in building theories, as we will see in this proposal.

I will achieve my goal of better understanding modularity by investigating q-series arising in particular in moonshine, combinatorics, vertex algebras, and Gromov-Witten invariants; this makes this project interdisciplinary. For this I will take predictions from these areas as guiding principle and develop new methods along the way. In the past obstructions to modularity have been a stumbling block. I will overcome this problem by a more systematic study of the occurring objects.

A successful outcome of the proposed research will open new doors as I will have my newly developed machinery at hand which will apply in other areas as well.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2020-COG

See all projects funded under this call

Host institution

UNIVERSITAT ZU KOLN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 986 017,00
Address
ALBERTUS MAGNUS PLATZ
50931 KOLN
Germany

See on map

Region
Nordrhein-Westfalen Köln Köln, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 986 017,00

Beneficiaries (1)

My booklet 0 0