Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

(Mock) Modular Forms are Everywhere

Description du projet

Étudier la symétrie brisée des formes modulaires

Les formes modulaires sont des fonctions analytiques complexes qui satisfont un certain type d’équation fonctionnelle relative à l’action du groupe modulaire. Elles généralisent les fonctions trigonométriques classiques qui sont périodiques, et elles interviennent en topologie algébrique, en géométrie arithmétique, en combinatoire, en physique mathématique, dans la théorie des nombres et la théorie des représentations. Le projet ModEv, financé par l’UE, entend étudier de nombreux exemples de modularité brisée, qui ne peuvent être clairement expliqués jusqu’à présent, et illustrer la modularité des séries q. Les activités du projet devraient permettre aux chercheurs de prévoir, de prouver et de comprendre la modularité dans divers contextes, notamment dans le moonshine, la combinatoire, les algèbres vertex et la géométrie énumérative.

Objectif

The main goal of this proposal is to investigate and explain modularity of q-series. Modular forms generalize classical trigonometric functions because they are periodic; however, they have more symmetries. They play a central role in many areas including algebraic topology, arithmetic geometry, combinatorics, mathematical physics, number theory, and representation theory. The situation is complicated by the fact that often modularity is broken; it is however not always a priori clear in which way. We will see several such examples of broken modularity in this proposal.

Many areas predict modularity of important functions but fail to provide a full understanding. Any progress made towards answering such questions will imply fundamental results at the frontier of number theory and other areas. The challenge that I am taking in this proposal is to push the boundaries further and to predict, prove, and understand modularity in various settings, particularly in moonshine, combinatorics, vertex algebras, and enumerative geometry.

This understanding of modularity has also wide-reaching applications to number theory.
I have many years of experience in answering modularity questions and already succeeded in proving many deep conjectures and in building theories, as we will see in this proposal.

I will achieve my goal of better understanding modularity by investigating q-series arising in particular in moonshine, combinatorics, vertex algebras, and Gromov-Witten invariants; this makes this project interdisciplinary. For this I will take predictions from these areas as guiding principle and develop new methods along the way. In the past obstructions to modularity have been a stumbling block. I will overcome this problem by a more systematic study of the occurring objects.

A successful outcome of the proposed research will open new doors as I will have my newly developed machinery at hand which will apply in other areas as well.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Régime de financement

ERC-COG - Consolidator Grant

Institution d’accueil

UNIVERSITAT ZU KOLN
Contribution nette de l'UE
€ 1 986 017,00
Adresse
ALBERTUS MAGNUS PLATZ
50931 Koln
Allemagne

Voir sur la carte

Région
Nordrhein-Westfalen Köln Köln, Kreisfreie Stadt
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 1 986 017,00

Bénéficiaires (1)