Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

(Mock) Modular Forms are Everywhere

Projektbeschreibung

Untersuchung der gebrochenen Symmetrie von Modulformen

Modulformen sind komplexe analytische Funktionen, die eine gewisse Art Funktionalgleichung bezüglich der Gruppenoperation der Modulgruppe erfüllen. Sie verallgemeinern klassische trigonometrische Funktionen, die periodisch sind, und kommen in der algebraischen Topologie, arithmetischen Geometrie, Kombinatorik, mathematischen Physik, Zahlentheorie und Darstellungstheorie vor. Das EU-finanzierte Projekt ModEv hat vor, zahlreiche Beispiele gebrochener Modularität zu untersuchen, die bislang nicht hinreichend erklärt werden können, und die Modularität der q-Reihe zu veranschaulichen. Die Arbeit des Projekts sollte Forschende dazu befähigen, Modularität in verschiedenen Zusammenhängen vorherzusagen, zu beweisen und zu verstehen, insbesondere im Zusammenhang mit der Monstergruppe, der Kombinatorik, Vertexalgebren und der abzählenden Geometrie.

Ziel

The main goal of this proposal is to investigate and explain modularity of q-series. Modular forms generalize classical trigonometric functions because they are periodic; however, they have more symmetries. They play a central role in many areas including algebraic topology, arithmetic geometry, combinatorics, mathematical physics, number theory, and representation theory. The situation is complicated by the fact that often modularity is broken; it is however not always a priori clear in which way. We will see several such examples of broken modularity in this proposal.

Many areas predict modularity of important functions but fail to provide a full understanding. Any progress made towards answering such questions will imply fundamental results at the frontier of number theory and other areas. The challenge that I am taking in this proposal is to push the boundaries further and to predict, prove, and understand modularity in various settings, particularly in moonshine, combinatorics, vertex algebras, and enumerative geometry.

This understanding of modularity has also wide-reaching applications to number theory.
I have many years of experience in answering modularity questions and already succeeded in proving many deep conjectures and in building theories, as we will see in this proposal.

I will achieve my goal of better understanding modularity by investigating q-series arising in particular in moonshine, combinatorics, vertex algebras, and Gromov-Witten invariants; this makes this project interdisciplinary. For this I will take predictions from these areas as guiding principle and develop new methods along the way. In the past obstructions to modularity have been a stumbling block. I will overcome this problem by a more systematic study of the occurring objects.

A successful outcome of the proposed research will open new doors as I will have my newly developed machinery at hand which will apply in other areas as well.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-COG - Consolidator Grant

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) ERC-2020-COG

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Gastgebende Einrichtung

UNIVERSITAT ZU KOLN
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 1 986 017,00
Adresse
ALBERTUS MAGNUS PLATZ
50931 KOLN
Deutschland

Auf der Karte ansehen

Region
Nordrhein-Westfalen Köln Köln, Kreisfreie Stadt
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 1 986 017,00

Begünstigte (1)

Mein Booklet 0 0