Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Deciphering the enigma of memory persistence: how the brain stably stores information using dynamic networks and unstable neurons

Project description

Unlocking the secrets of memory in the brain

There are many unsolved mysteries of the brain, one of which is the storage and retrieval of memory. Using novel methods for optical imaging, large-scale data analysis, and circuit manipulation, the EU-funded DYNAMIC_ENGRAM project will examine the mechanisms that control the reorganisation of memory, bringing to light the factors that govern the circuit dynamics of memory representations. The project's work will uncover the way systems-level consolidation is achieved at the neural code level and how, in spite of ever-changing neuronal representation, stable memory is maintained in the long-term.

Objective

How does the brain store and retrieve information over time? The accepted notion that these processes rely on the neuronal ensembles that were active during learning is now challenged by findings by our lab and others that reveal that different neurons and networks than those that were active during learning support persistent memory. Most notably, we found that the long-term persistence of spatial memory is correlated with the degree to which neuronal activity is spatially informative, but not with the stability of the coding carried by individual neurons. These discoveries—obtained via novel imaging technologies that enable, for the first time, to track large populations of the same neurons over weeks—expose a fundamental gap in our understanding and highlight the need to reveal how neural codes across brain circuits, including the hippocampus, entorhinal cortex, and prefrontal cortex, change over the lifetime of a memory.
Here we propose to investigate the mechanisms that govern the reorganization of memory using innovative methods we recently developed for optical imaging, large-scale data analysis, and circuit manipulation. Key among them is our ability to simultaneously and longitudinally image in two related brain areas the activity of large neuronal populations in freely behaving mice. Using these new tools, we will elucidate the factors governing the circuit dynamics of memory representations (Aim 1); how such dynamics relate to the behavioral manifestation of memory (Aim 2); how hippocampal-cortical and cortical-cortical interactions change over weeks to support remote memory (Aim 3); and what mechanisms could underlie the transfer of learned information between neurons in a network (Aim 4).
Our approach will allow us to resolve how systems-level consolidation is realized at the neural code level, both within and across brain areas, and how a stable memory is maintained over the long term despite an ever-changing neuronal representation.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2020-COG

See all projects funded under this call

Host institution

WEIZMANN INSTITUTE OF SCIENCE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 000 000,00
Address
HERZL STREET 234
7610001 Rehovot
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 000 000,00

Beneficiaries (1)

My booklet 0 0