Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

MMP and Mirrors via Maximal Modification Algebras

Description du projet

De nouvelles approches mathématiques affinent notre description de la théorie des cordes

La théorie des cordes tente d’unifier les théories actuellement incompatibles de la mécanique quantique et de la relativité générale. La matière et les particules de force y sont décrites comme une série de cordes unidimensionnelles (1D) plutôt que de points (0D), vibrant dans un espace à dix dimensions: neuf dimensions spatiales et une dimension temporelle. L’espace supplémentaire de 6 dimensions s’étendant au-delà de notre espace 4D classique est décrit par les variétés de Calabi-Yau. Il existe un grand nombre, peut-être infini, de variétés Calabi-Yau triples (trois dimensions complexes), confondus par une symétrie miroir dans laquelle certaines d’entre elles peuvent sembler différentes géométriquement mais sont essentiellement équivalentes dans le contexte de la théorie des cordes. Le projet MMiMMa, financé par l’UE, se penche sur les Calabi-Yau triples et la symétrie miroir afin d’ouvrir de nouvelles perspectives pour la théorie des cordes.

Objectif

Geometrically, this proposal is concerned primarily with Calabi--Yau threefolds, their (local) classification, their homological properties, various associated structures such as stability conditions and Frobenius manifolds, and the resulting predictions across mirror symmetry. Our approach to these problems is through noncommutative algebra, and necessarily so. We will use techniques from contraction algebras and noncommutative resolutions to classify, using both theoretical and constructive methods, and in the process verify an amended version of a string theory prediction. We will use this to push forward curve-counting and derived category consequences and obstructions, and will work towards building a full database of 3-fold flops. On a parallel track, we will treat fundamental problems in noncommutative resolutions and their variants, and approach some of the founding conjectures in the area. We will tackle problems such as existence of MMAs through to more specific problems such as faithful actions and K(pi,1) through stability manifolds and tilting theory on preprojective algebras. We will furthermore merge all this into an emerging theory of Frobenius manifolds, SKMS, and schobers, and through this expand on recent work constructing mirrors to various flopping contractions.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-COG - Consolidator Grant

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2020-COG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

UNIVERSITY OF GLASGOW
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 889 131,00
Adresse
UNIVERSITY AVENUE
G12 8QQ Glasgow
Royaume-Uni

Voir sur la carte

Région
Scotland West Central Scotland Glasgow City
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 889 131,00

Bénéficiaires (1)

Mon livret 0 0