Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Motivic Cohomology of Schemes

Description du projet

Aller au-delà de la théorie de la cohomologie motivique actuelle

À l’origine, la cohomologie appartient à la géométrie et à la théorie des espaces, et sert à saisir et linéariser de subtiles informations géométriques et topologiques. Elle a été étendue de diverses façons à la géométrie algébrique et à la théorie des nombres, où elle permet désormais de coder des informations arithmétiques pertinentes pour de nombreux problèmes importants non résolus. Une théorie cohomologique particulière, et en un certain sens universelle, est la cohomologie géométrique motivique développée des années 1980 aux années 2000. Le projet MoCoS, financé par l’UE, développe une extension de cette cohomologie motivique au contexte arithmétique, voire singulier. Il s’appuie sur des percées récentes en théorie de l’homotopie et en géométrie arithmétique, notamment l’homologie cyclique topologique et les perfectoïdes.

Objectif

The project belongs to the field of arithmetic algebraic geometry and is centred around algebraic K-theory, motivic cohomology, and topological cyclic homology. The overall goal is to develop a general theory of motivic cohomology for arbitrary schemes, extending the existing theory of Bloch, Levine, Suslin, Voevodsky, and others in the special case of smooth algebraic varieties. This will describe non-connective algebraic K-theory via an Atiyah--Hirzebruch spectral sequence. The project relies on very recent breakthroughs in algebraic K-theory and topological cyclic homology.

In the case of singular algebraic varieties, our goal will be to develop a theory of motivic cohomology which both satisfies singular analogous of the Beilinson--Lichtenbaum conjectures and is also compatible with the trace maps to negative cyclic and topological cyclic homology. Its properties will refine those of K-theory in the presence of singularities; for example, we will study a motivic refinement of Weibel's vanishing conjecture and a theory of ``infinitesimal motivic cohomology'' satisfying cdh descent.

In the case of regular arithmetic schemes we will propose a new approach to the theory of p-adic motivic cohomology, based on topological cyclic homology and syntomic cohomology, which works in much greater generality than previous approaches. Perfectoid techniques will play an important role and we will establish the p-adic Beilinson--Lichtenbaum and Bloch--Kato conjectures.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
La classification de ce projet a été validée par l'équipe qui en a la charge.

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-COG - Consolidator Grant

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2020-COG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 635 650,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 635 650,00

Bénéficiaires (1)

Mon livret 0 0