CORDIS - Forschungsergebnisse der EU
CORDIS

Networks of coupled photon Bose-Einstein condensates: when condensation becomes a computation

Projektbeschreibung

Ein photonischer Ansatz zur Lösung komplexer mathematischer Probleme

Spinglas ist ein magnetisches Material, dessen magnetische Orientierung im gefrorenen Zustand komplett zufällig zu sein scheint. Es dient als Modell für umfassende mathematische Probleme, beispielsweise im Bereich der künstlichen Intelligenz, Logistik und DNA-Sequenzierung, die sich mit der aktuellen Computertechnik nur schwer lösen lassen. Das EU-finanzierte Projekt BEC-NETWORKS möchte Bose-Einstein-Kondensate aus Photonen entwickeln, wofür mehrere Laserstrahlen an optische Mikrokavitäten abgegeben werden. Anhand der Experimentierplattform werden die Forschenden ultraschnelle Simulationen klassischer Spinsysteme durchführen und das grundlegende Spinglas-Problem lösen können.

Ziel

Despite large advances in both algorithms and computer technology, even typical instances of computationally hard problems are too difficult to be solved on today’s computers. Unconventional computational devices that break with the usual paradigms of digital electronic computers can help to overcome these limitations. In this project, a network of coupled photon Bose-Einstein condensates will be developed and used as experimental platform to perform ultrafast simulations of classical spin systems. Specifically, the network will be capable of solving the ground-state problem in spin glasses (disordered magnets). The latter constitutes a well-known combinatorial problem that can be mapped mathematically to many other computationally hard problems in machine learning, logistics, computer chip design and DNA sequencing. In a proof-of-principle experiment, I aim to demonstrate that the proposed spin glass simulator performs this computationally hard optimisation problem significantly faster than any other computer today. I have pioneered the Bose-Einstein condensation of photons in optical microcavities, which has enabled us to investigate this genuine quantum-mechanical effect with all-optical methods. In a recent work of my group, we experimentally demonstrate controllable phase relations between photon Bose-Einstein condensates in an optical microcavity. The investigated device realises an optical analogue of a Josephson junction. Similar to a transistor for electronics, a controllable photonic Josephson junction represents the key component for ultrafast optical spin glass simulation and, thus, is the crucial basis for the proposed project. The BEC-NETWORKS project will be the main research project of my research group at the University of Twente.

Gastgebende Einrichtung

UNIVERSITEIT TWENTE
Netto-EU-Beitrag
€ 2 000 000,00
Adresse
DRIENERLOLAAN 5
7522 NB Enschede
Niederlande

Auf der Karte ansehen

Region
Oost-Nederland Overijssel Twente
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 2 000 000,00

Begünstigte (1)