Descrizione del progetto
Simulazione quantistica avanzata di molti corpi con una precisione senza precedenti
I sistemi microscopici o quantistici composti da molte particelle interagenti (i cosiddetti sistemi quantistici a molti corpi) possono esibire fenomeni emergenti spontanei che sono esotici e unici, aprendo la porta a opportunità per applicazioni senza precedenti. Tuttavia, poiché la maggior parte di essi è stata scoperta per caso e abbiamo una conoscenza molto limitata della fisica sottostante, siamo lontani dall’essere in grado di controllarli. La simulazione di questi sistemi, sia sul piano sperimentale che su quello teorico, può affrontare questa sfida. Il progetto NexGenTeN, finanziato dall’UE, farà progredire il campo degli algoritmi di rete tensoriale che è stato determinante nella simulazione dei sistemi quantistici a molti corpi per una precisione e una comprensione senza precedenti.
Obiettivo
One of the biggest and most relevant challenges in physics is the accurate study of strongly correlated quantum many-body systems, which give rise to very remarkable phenomena like high-Tc superconductivity (HTSC), quantum spin liquids with topological order, and other novel phases of matter. Understanding these systems is the key to designing new materials and quantum devices for future groundbreaking technologies. In recent years enormous progress in the study of these systems has been achieved with two-dimensional tensor network algorithms, which can be seen as a generalization of the powerful density-matrix renormalization group method to higher dimensions. While already the current algorithms are very powerful and outperform other state-of-the-art approaches, the development of new algorithms with a higher accuracy and broader application range is crucial to enable to solve the most pressing open problems.
Building upon my previous breakthroughs in this field, I will develop the next generation of tensor network algorithms, including novel powerful methods for ground states, time evolution, spectral functions, finite temperature, open systems, and multi-scale approaches. I will use them for groundbreaking simulations of relevant open problems in several fields with unprecedented accuracy. Major milestones include (1) simulations of realistic models of cuprate materials in order to shed new light on the pseudogap phase and pairing mechanism in HTSC, (2) cutting-edge simulations of frustrated materials to reveal the nature of excitations and thermodynamic properties of quantum spin liquids and other challenging states, and (3) predictions of novel states of matter in SU(N) and open quantum systems which can be realized in experimental quantum simulators. This ambitious project will strongly advance our fundamental understanding of strongly correlated systems and set a new state-of-the-art in simulating quantum many-body problems.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Programma(i)
Argomento(i)
Invito a presentare proposte
(si apre in una nuova finestra) ERC-2020-COG
Vedi altri progetti per questo bandoMeccanismo di finanziamento
ERC-COG -Istituzione ospitante
1012WX Amsterdam
Paesi Bassi