Descripción del proyecto
Diagnóstico avanzado basado en imágenes para los pacientes con nefropatía crónica
La nefropatía crónica (NPC o CKD, por sus siglas en inglés) afecta al 10 % de la población mundial, representa una causa importante de muerte e implica una importante carga social y sanitaria. Debido a la falta de enfoques reproducibles que reflejen específicamente los procesos patológicos intrarrenales y la actividad de la enfermedad, los pacientes con NPC tienen unas opciones limitadas en cuanto al tratamiento y la participación en ensayos clínicos aleatorizados traslacionales. El proyecto financiado con fondos europeos AIM.imaging.CKD desarrollará, validará e integrará diagnósticos basados en imágenes para la NPC. La integración de conocimientos especializados interdisciplinarios permitirá establecer un método a escala múltiple, desde el diagnóstico nano y micromorfológico al macromorfológico y molecular. El proyecto desarrollará diagnósticos aumentados de biopsia renal histológica y ultraestructural de espectro completo basados en la inteligencia artificial, usando principalmente técnicas de aprendizaje automático y aprendizaje profundo.
Objetivo
Chronic kidney disease (CKD) is a major global health problem, affecting 10% of the world population and projected to be the fifth major cause of death in 2040. CKD patients are one of the most complex and multi-morbid populations in internal medicine while at the same time having the least translational randomized clinical trials and limited treatment options. One of the major reasons for this is the lack of reproducible approaches specifically reflecting intrarenal pathological processes and disease activity. The overall goal of AIM.imaging.CKD is to specifically address this unmet need by developing, validating and integrating image-based diagnostics for CKD. The integration of broad interdisciplinary expertise will enable to develop a multiscale approach from nano- to micro- to macromorphological and molecular diagnostics. Specifically, the project will develop augmented full-spectrum ultrastructural (“nano”) and histological (“micro”) renal biopsy diagnostics, focusing on reproducible, quantitative nephropathological analyses and prediction of clinically relevant outcome parameters. The project will also explore macro-morphological and molecular imaging in CKD, focusing on translatable non-invasive approaches. The central feature will be the development of advanced, scalable and modular image analyses models utilizing artificial intelligence (AI), particularly machine and deep learning. Using preclinical testing and clinical validation, the main emphasis will be on accelerated or, whenever possible, direct implementation into the clinical practice. The integration of the above-mentioned tools and technologies provides a comprehensive multiscale and multiplex approach for improved diagnostics of CKD patients and facilitate future randomized clinical trials. At each level, and even more so when integrated, the results are expected to augment and transform image-based diagnostics of kidney diseases, and thereby lead to improved patient management and outcome.
Palabras clave
Programa(s)
Régimen de financiación
ERC-COG - Consolidator GrantInstitución de acogida
52074 Aachen
Alemania