European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Photomechanical writing of cell functions

Descripción del proyecto

Las respuestas dinámicas y adaptativas de las células

La biorrobótica podría salvar algún día millones de vidas con órganos y tejidos artificiales generados con células madre. Con todo, el primer paso consiste en comprender mejor las células y sus respuestas dinámicas y adaptativas a las fuerzas externas. En el proyecto PHOTOMECH, financiado con fondos europeos, se estudiarán las funciones celulares controladas por fuerzas. Para ello, se empleará un complejo método de estimulación celular fotomecánico innovador. En concreto, el equipo del proyecto combinará nuevos materiales que contengan moléculas fotoactivadas con un complejo sistema óptico que emplee impulsos láser fuertes. Los impulsos láser permiten ejercer estímulos controlados de fuerza en las células a través de un cambio conformacional de las moléculas fotoactivadas. El proyecto obtendrá información física hasta ahora inalcanzable del interior de las células a diferentes escalas de tamaño.

Objetivo

Generating artificial organs and tissues from stem cells would revolutionize regenerative medicine and open the door to controllable, biology-based robotics. These systems require a physical understanding of cells, specifically their dynamic and adaptive responses to external forces. This “mechanotransduction” is already known to control important cellular functions, and even stem cell differentiation. With the project proposed here, I plan to bring our quantitative understanding of force-controlled cell functions to a new level by a challenging and novel photomechanical cell stimulation approach. It will combine new materials containing photoswitchable molecules with a complex optical system employing intense laser light pulses. By pulsing the laser, we can apply controllable force stimuli on cells through a conformational change of the photoswitchable molecules. I hypothesize that cell functions, such as adhesion, migration and differentiation, have a huge systematic dependency on frequency, duration, history, and intensity of the force stimuli. Importantly, the method I propose applies forces to cells solely via light and does not require genetic modifications. Using this novel strategy for photomechanical stimulation of cellular proteins, we will be able to collect previously unobtainable physical information within cells on multiple size scales, from the single molecule to tissue level. Using the laser like a pen, we will be able for the first time to write cell functions in 3D, imitating the growth of the cellular scaffolds in living creatures: a completely new means of photomechanically controlling multicellular structures. Ultimately, the tools and materials we study in this interdisciplinary project will allow for the writing of multicellular structures in vitro and in vivo by force-induced mechanotransduction in stem cells. It will lead to a paradigm-shift in many fields, from biophysics to regenerative medicine, synthetic biology and biohybrid robotics.

Régimen de financiación

ERC-COG - Consolidator Grant

Institución de acogida

RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
Aportación neta de la UEn
€ 2 433 445,00
Dirección
SEMINARSTRASSE 2
69117 Heidelberg
Alemania

Ver en el mapa

Región
Baden-Württemberg Karlsruhe Heidelberg, Stadtkreis
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 2 433 445,00

Beneficiarios (1)