Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Fully Integrating Atomistic Modeling with Machine Learning

Opis projektu

Połączone podejście pozwoli na usprawnienie modelowania właściwości materiałów

Uczenie maszynowe pozwala na usprawnienie modelowania predykcyjnego materiałów, skracając czas potrzebny do badania ich właściwości fizycznych, chemicznych i mechanicznych z wielu lat do zaledwie kilku miesięcy. Wykorzystywane obecnie symulacje oparte na uczeniu maszynowym nie są jednak w stanie w wystarczającym stopniu sprostać współczesnym wyzwaniom związanym z modelowaniem, zwłaszcza dotyczącym złożonych materiałów w realistycznych warunkach. Pewną pomoc w tym zakresie mogą stanowić interdyscyplinarne badania obejmujące metody uczenia maszynowego, mechaniki kwantowej i mechaniki statystycznej, które pozwolą na zwiększenie możliwości tej technologii. Celem zespołu finansowanego ze środków Unii Europejskiej projektu FIAMMA jest opracowanie gotowych do wykorzystania ram pozwalających na bezproblemowe połączenie uczenia maszynowego z modelowaniem opartym na fizyce. Połączenie tych trzech podejść powinno zaowocować znaczącym rozszerzeniem możliwości symulacji atomistycznych, dzięki czemu będziemy w stanie lepiej zrozumieć rolę paradygmatów indukcyjnych i dedukcyjnych w procesie modelowania oraz w teorii.

Cel

Computer simulations of molecules and materials are undergoing a profound transformation. Machine learning (ML) has become essential to extend the reach and increase the predictive power of atomic-scale modeling. The potential of ML in association with quantum mechanical (QM) and statistical mechanical (SM) methods has been shown, but the link has been rather superficial, due to the complex, interdisciplinary effort needed to combine the three approaches. Without full convergence, ML-powered simulations cannot address modern modeling challenges, which involve complex materials in realistic conditions, and require increasingly predictive accuracy.
The objective of this project is to create a “plug and play” framework by which ML can be seamlessly combined with physics-based modeling, substituting individual steps of a QM calculation, or making direct predictions across complex SM workflows. Full integration of the three approaches will greatly extend the reach of atomistic simulations, and allow an insightful critical comparison of the role of inductive and deductive paradigms in theory and modeling. The development of an open-source software that unifies QM, SM and ML shall facilitate early adoption and broaden impact. We will demonstrate the benefits of our integrated framework through two challenging and compelling platform problems: (i) investigating stabilities and properties of flexible drug-like molecules and assemblies, and (ii) discovering fundamental structure-activity relationships of porous aluminosilicates for clean chemical technologies.
Critical knowledge gaps that will be filled include: (1) the description of long-range physics within the same conceptual framework that has been used for short-range interactions; (2) the symmetry-adapted representation of input and outputs of each step of a QM calculation; and (3) the rigorous characterization of SM ensembles to enable end-to-end predictions of equilibrium properties with uncertainty quantification.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-COG - Consolidator Grant

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) ERC-2020-COG

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Instytucja przyjmująca

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 1 998 015,00
Adres
BATIMENT CE 3316 STATION 1
1015 LAUSANNE
Szwajcaria

Zobacz na mapie

Region
Schweiz/Suisse/Svizzera Région lémanique Vaud
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 1 998 015,00

Beneficjenci (1)

Moja broszura 0 0