Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Fully Integrating Atomistic Modeling with Machine Learning

Descripción del proyecto

Un método combinado para mejorar la modelización de las propiedades de materiales

El aprendizaje automático mejora la modelización predictiva de materiales y reduce de años a meses el tiempo necesario para estudiar sus propiedades físicas, químicas y mecánicas. Con todo, las simulaciones de aprendizaje automático actuales no logran abordar satisfactoriamente los retos modernos de la modelización de materiales complejos en condiciones realistas. La investigación interdisciplinaria que aúna el aprendizaje automático, la mecánica cuántica y los métodos de la mecánica estadística podría ayudar a desarrollar aún más las capacidades del aprendizaje automático. El objetivo del proyecto FIAMMA, financiado con fondos europeos, es crear un marco «enchufar y usar» que permita combinar perfectamente el aprendizaje automático con la modelización basada en la física. La integración de los tres enfoques debería ampliar sustancialmente el alcance de las simulaciones atomísticas, lo que favorecería una mejor comprensión del papel de los paradigmas inductivos y deductivos en la teoría y la modelización.

Objetivo

Computer simulations of molecules and materials are undergoing a profound transformation. Machine learning (ML) has become essential to extend the reach and increase the predictive power of atomic-scale modeling. The potential of ML in association with quantum mechanical (QM) and statistical mechanical (SM) methods has been shown, but the link has been rather superficial, due to the complex, interdisciplinary effort needed to combine the three approaches. Without full convergence, ML-powered simulations cannot address modern modeling challenges, which involve complex materials in realistic conditions, and require increasingly predictive accuracy.
The objective of this project is to create a “plug and play” framework by which ML can be seamlessly combined with physics-based modeling, substituting individual steps of a QM calculation, or making direct predictions across complex SM workflows. Full integration of the three approaches will greatly extend the reach of atomistic simulations, and allow an insightful critical comparison of the role of inductive and deductive paradigms in theory and modeling. The development of an open-source software that unifies QM, SM and ML shall facilitate early adoption and broaden impact. We will demonstrate the benefits of our integrated framework through two challenging and compelling platform problems: (i) investigating stabilities and properties of flexible drug-like molecules and assemblies, and (ii) discovering fundamental structure-activity relationships of porous aluminosilicates for clean chemical technologies.
Critical knowledge gaps that will be filled include: (1) the description of long-range physics within the same conceptual framework that has been used for short-range interactions; (2) the symmetry-adapted representation of input and outputs of each step of a QM calculation; and (3) the rigorous characterization of SM ensembles to enable end-to-end predictions of equilibrium properties with uncertainty quantification.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-COG - Consolidator Grant

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2020-COG

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 1 998 015,00
Dirección
BATIMENT CE 3316 STATION 1
1015 LAUSANNE
Suiza

Ver en el mapa

Región
Schweiz/Suisse/Svizzera Région lémanique Vaud
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 1 998 015,00

Beneficiarios (1)

Mi folleto 0 0