Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Cross-dimensional Activation of Two-Dimensional Semiconductors for Photocatalytic Heterojunctions

Description du projet

De semi-conducteurs 2D activés ultra-performants pour améliorer la photocatalyse

Les matériaux bidimensionnels (2D) incitent de très nombreux chercheurs à explorer les nouvelles possibilités qu’ils offrent par rapport à leurs homologues plus grands. Le projet CATCH, financé par l’UE, envisage d’exploiter le potentiel des semi-conducteurs 2D dans la photocatalyse en vue d’accélérer les réactions. Le projet utilisera une méthode avancée d’activation des semi-conducteurs 2D en étudiant les propriétés des matériaux au niveau fondamental. Les activités du projet devraient permettre de faciliter le processus de photocatalyse pratique, notamment pour la purification de l’eau et la production d’hydrogène.

Objectif

Spacetime defines existence and evolution of materials. A key path to human’s sustainability through materials innovation can hardly circumvent materials dimensionalities. Despite numerous studies in electrically distinct 2D semiconductors, the route to engage them in high-performance photocatalysts remains elusive. Herein, CATCH proposes a cross-dimensional activation strategy of 2D semiconductors to implement practical photocatalysis. It operates electronic structures of dimensionally paradoxical 2D semiconductors and spatially limited nD (n=0-2) guests, directs charge migration processes, mass-produces advanced catalysts and elucidates time-evolved catalysis. Synergic impacts crossing 2D-nD will lead to > 95%/hour rates for pollutant removal and >20% quantum efficiencies for H2 evolution under visible light. CATCH enumerates chemical coordination and writes reaction equations with sub-nanosecond precision.
CATCH employs density functional theory optimization and data mining prediction to select most probable heterojunctional peers from hetero/homo- dimensions. Through facile but efficient wet and dry synthesis, nanostructures will be bonded to basal planes or brinks of 2D slabs. CATCH benefits in-house techniques for product characterizations and refinements and emphasizes on cutting-edge in situ studies to unveil photocatalysis at advanced photon sources. Assisted with theoretical modelling, ambient and time-evolved experiments will illustrate photocatalytic dynamics and kinetics in mixed spacetime.
CATCH unites low-dimensional materials designs by counting physical and electronic merits from spacetime confinements. It metrologically elaborates photocatalysis in an elevated 2D+nD+t, alters passages of materials combinations crossing dimensions, and directs future photocatalyst designs. Standing on cross-dimensional materials innovation and photocatalysis study, CATCH breaks the deadlock of practical photocatalysis that eventually leads to sustainability.

Régime de financement

ERC-COG - Consolidator Grant

Institution d’accueil

OULUN YLIOPISTO
Contribution nette de l'UE
€ 1 999 946,00
Adresse
PENTTI KAITERAN KATU 1
90014 Oulu
Finlande

Voir sur la carte

Région
Manner-Suomi Pohjois- ja Itä-Suomi Pohjois-Pohjanmaa
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 1 999 946,00

Bénéficiaires (1)