Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Cross-dimensional Activation of Two-Dimensional Semiconductors for Photocatalytic Heterojunctions

Descripción del proyecto

Semiconductores bidimensionales activados de alto rendimiento para mejorar la fotocatálisis

Los materiales bidimensionales (2D) están animando a tropas de investigadores a explorar las nuevas posibilidades que ofrecen en comparación con sus homólogos de mayor tamaño. El proyecto CATCH, financiado con fondos europeos, pretende aprovechar el potencial de los semiconductores 2D únicos en el ámbito de la fotocatálisis para acelerar las reacciones. El proyecto empleará un método avanzado de activación de semiconductores 2D para investigar las propiedades del material a nivel fundamental. Se espera que las actividades del proyecto derriben las barreras que impiden la fotocatálisis práctica, especialmente para las aplicaciones de purificación de agua y producción de hidrógeno.

Objetivo

Spacetime defines existence and evolution of materials. A key path to human’s sustainability through materials innovation can hardly circumvent materials dimensionalities. Despite numerous studies in electrically distinct 2D semiconductors, the route to engage them in high-performance photocatalysts remains elusive. Herein, CATCH proposes a cross-dimensional activation strategy of 2D semiconductors to implement practical photocatalysis. It operates electronic structures of dimensionally paradoxical 2D semiconductors and spatially limited nD (n=0-2) guests, directs charge migration processes, mass-produces advanced catalysts and elucidates time-evolved catalysis. Synergic impacts crossing 2D-nD will lead to > 95%/hour rates for pollutant removal and >20% quantum efficiencies for H2 evolution under visible light. CATCH enumerates chemical coordination and writes reaction equations with sub-nanosecond precision.
CATCH employs density functional theory optimization and data mining prediction to select most probable heterojunctional peers from hetero/homo- dimensions. Through facile but efficient wet and dry synthesis, nanostructures will be bonded to basal planes or brinks of 2D slabs. CATCH benefits in-house techniques for product characterizations and refinements and emphasizes on cutting-edge in situ studies to unveil photocatalysis at advanced photon sources. Assisted with theoretical modelling, ambient and time-evolved experiments will illustrate photocatalytic dynamics and kinetics in mixed spacetime.
CATCH unites low-dimensional materials designs by counting physical and electronic merits from spacetime confinements. It metrologically elaborates photocatalysis in an elevated 2D+nD+t, alters passages of materials combinations crossing dimensions, and directs future photocatalyst designs. Standing on cross-dimensional materials innovation and photocatalysis study, CATCH breaks the deadlock of practical photocatalysis that eventually leads to sustainability.

Régimen de financiación

ERC-COG - Consolidator Grant

Institución de acogida

OULUN YLIOPISTO
Aportación neta de la UEn
€ 1 999 946,00
Dirección
PENTTI KAITERAN KATU 1
90014 Oulu
Finlandia

Ver en el mapa

Región
Manner-Suomi Pohjois- ja Itä-Suomi Pohjois-Pohjanmaa
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 1 999 946,00

Beneficiarios (1)