Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Multicomponent Protein Cage Co-Crystals

Descrizione del progetto

Co-assemblaggio di gabbie proteiche biologiche e materiali sintetici

La preparazione e la caratterizzazione di materiali funzionali di nuova generazione richiedono la possibilità di orientare l’ordine strutturale nanometrico in un materiale complesso. Materiali multicomponenti ordinati gerarchicamente consentono l’integrazione controllata di elementi costitutivi in nanoparticelle all’interno di strutture periodiche. I capsidi virali e la ferritina sono esempi di nanogabbie basate su proteine con una struttura monodispersa e definita geometricamente utilizzabile per incapsulare diversi materiali. Il progetto ProCrystal, finanziato dall’UE, propone il co-assemblaggio di gabbie proteiche biologiche e di materiali sintetici per colmare il divario tra i gruppi ordinati biologici e sintetici. I vantaggi potenziali comprendono la creazione di gruppi plasmonici regolabili magneticamente, di materiali porosi in grado di legarsi simultaneamente a componenti organici e inorganici, oltre a nanostrutture inorganiche di modelli di cristallo della gabbia proteica.

Obiettivo

The possibility to direct nanoscale structural order in complex matter is an important prerequisite for the preparation and characterisation of next-generation functional materials. Hierarchically ordered multicomponent materials are particularly interesting in this respect, since they allow controlled integration of different nanoparticle/material building blocks into periodic nanostructures with lattice constants that are much shorter than the wavelength of light. However, most of the current nanostructured materials consist of fully synthetic or biological materials since the integration of biological and synthetic building blocks in a designed manner remains a challenging task.
Here we propose an approach based on the co-assembly of biological protein cages and synthetic materials to bridge the gap between ordered synthetic materials and biological assemblies. Protein-based nanocages, such as ferritins and virus capsids, offer a complex yet monodisperse and geometrically well-defined cage that can be used to encapsulate different materials. We will utilize ferritin and virus particles as a size constrained reaction vessels to prepare monodisperse iron oxide nanoparticles and combine these electrostatically with synthetic noble metal nanoparticles to yield diverse crystal arrangement with coupled magnetic and plasmonic properties. During the course of the project, we will address important challenges, such as how to design responsive and collectively behaving biohybrid materials and to push the research and results beyond the current state-of-the-art. We aim to achieve this by using unconventional methods in designing, synthesising and applying new functional materials whose interactions and co-crystalline packing with biomacromolecules can be controlled. Potential outcomes include magnetically tuneable plasmonic assemblies, porous materials capable of simultaneous binding of organic and inorganic guest and protein cage crystal template inorganic nanostructures.

Meccanismo di finanziamento

ERC-COG - Consolidator Grant

Istituzione ospitante

AALTO KORKEAKOULUSAATIO SR
Contribution nette de l'UE
€ 1 997 502,00
Indirizzo
OTAKAARI 1
02150 Espoo
Finlandia

Mostra sulla mappa

Regione
Manner-Suomi Helsinki-Uusimaa Helsinki-Uusimaa
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 1 997 502,00

Beneficiari (1)