Project description
It’s all about timing: the paradigm of embryonic development
Embryonic development begins after fertilisation and undergoes the same stages in many species, at however different paces depending on the organism. The underlying aetiology of the differences in developmental time between species remains unclear. The working hypothesis of the EU-funded ALLOCHRONY project is that this developmental allochrony is due to different rates in key biochemical reactions. Researchers will develop organoids from pluripotent stem cells that mimic early embryogenesis to study key reactions in mouse and human cells. Results will advance existing knowledge on embryonic development and identify the rate-limiting steps in the process.
Objective
While the mechanisms of embryonic development are well conserved, the progression speed differs among animal species. The molecular cause of ‘allochrony’, interspecies differences in developmental tempo, remains unclear due to lack of an appropriate experimental model. In vitro differentiation of pluripotent stem cells (PSCs) offers unique opportunities to compare the same cell type among diverse species in a similar condition.
We have previously recapitulated the oscillatory gene expression of the segmentation clock with PSCs, demonstrating ~2 hour and ~5 hour oscillation periods in murine and human induced presomitic mesoderm (PSM) cells, respectively. We have further found that the period difference stems from differential biochemical reaction speeds of HES7, a core segmentation clock gene, between the species: human PSM cells show slower degradation rates of HES7 and longer delays in its production processes than mouse cells.
Here we aim to investigate the deeper origin of developmental allochrony, the molecular mechanism by which human cells exhibit slower biochemical reactions. We will systematically and quantitatively measure the degradation rates and delays to reveal commonalities of the genes that show differential reaction speeds between murine and human cells (Aim 1). In parallel, we will test two working hypotheses that nuclear/cytoplasmic transport rates or metabolic rates might be lower in human cells, which should lead to slower biochemical reactions (Aim 2).
The other objective is to test the universality of the mechanism of allochrony. We will create gastruloids, organoids mimicking early embryogenesis, from PSCs of diverse mammalian species to investigate what cell types, in addition to PSM cells, and what species exhibit the differential biochemical reaction speeds (Aim 3).
This study will tackle a fundamental question in biology by using quantitative, cutting-edge technologies, ultimately enabling manipulation of developmental time.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
01069 Dresden
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.