Project description
Organoid model to study human neuromuscular system development and diseases
Dysfunction in the interaction between the nervous system and muscles results in deadly diseases such as spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). The EU-funded GPSorganoids project will study the regulatory mechanisms involved in the formation and maintenance of the human neuromuscular system, and their disruption in diseases, using 3D human neuromuscular organoids (NMOs). NMOs have previously been developed, where two distinct tissues, the spinal cord and skeletal muscles, are formed in parallel, self-organise and interact to form functional neuromuscular junctions. The model will be utilised to study ALS and SMA, including the establishment of a drug screening platform.
Objective
Locomotion results from the interaction between muscles and the nervous system. Dysfunction of such cells results in deadly diseases such as spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). These diseases often show regional selectivity but the underlying reasons remain obscure due to the lack of a suitable model system. In previous work of my laboratory, we established a 3D neuromuscular organoid (NMO) model that allows the simultaneous generation of spinal cord neurons and skeletal muscle cells from human pluripotent stem cells (hPSCs) through a bipotent neuromesodermal progenitor (NMP). NMPs, located in the posterior part of the embryo, are driving axial elongation and coordinated growth of the trunk neuromuscular system. We coaxed hPSC derived NMPs to develop into neuromuscular organoids that form functional neuromuscular junctions supported by the presence of terminal Schwann cells and central pattern generator-like circuits. Thus, we are in the unique position to study in an organoid model the regulatory mechanisms involved in the formation and maintenance of the human neuromuscular system, and the disruption of these mechanisms in diseases. We will (i) identify the molecular requirements for the Generation of Position Specific (GPS) organoids representing distinct spinal cord segments, (ii) use NMOs to model and study ALS and SMA including the establishment of a drug screening platform and (iii) assemble hPSC-derived cerebral organoids and NMOs to include in the model human corticospinal tracts. In the long term, the information gained will have important implications for understanding and eventually treating neuromuscular diseases.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
13125 Berlin
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.