Project description
New ways to break down molecules opens the door to new ways to make them too
Carbon chemistry is invaluable to fields from pharmaceutical development to plastics and polymer manufacturing. Developing novel carbon-based compounds or compounds that mimic important natural ones can be simplified by using carbon-containing feedstocks from which atoms are removed and functional groups added in their places. Amines, molecules containing carbon bound to nitrogen, are widely available and highly diverse, and therefore among the most important building blocks in organic chemistry. The EU-funded SCAN project is developing new ways to cleave carbon–nitrogen bonds, paving the way for novel catalytic transformations and products.
Objective
Amines are ubiquitous across natural products, pharmaceuticals, polymers and biomolecules. The number of commercially available amines, from simple to complex, makes them one of the most accessible native functional groups. Therefore, they represent an attractive feedstock for the preparation of functionalized molecules through C-N bond activation.
Nature long ago developed protocols to promote oxidative deamination reactions. Inspired by this approach, SCAN (Selective Pathways for CArbon-Nitrogen Bond Cleavage) is designed to open new directions in the field of C-N bond cleavage by unlocking the oxidative deamination pathway. To achieve this goal, the following specific objectives are proposed:
1) Design of redox-active amines capable of undergoing oxidative C-N cleavage.
2) Development of novel oxidative deaminations using photoredox and metallaphotoredox catalysis.
3) Site-selective modifications of peptides through photocatalyzed oxidative deaminations.
The successful implementation will allow the use of one of the most readily available functional groups in a myriad of novel catalytic transformations, including for the first time asymmetric catalysis. The prevalence of alkyl amines in pharmaceuticals makes SCAN an ideal tool for late stage functionalization and molecular editing of complex molecules. Moreover, this reactivity could be used to achieve site-selective modifications of NH2 groups in peptides via C-N bond cleavage, which would have a profound impact in the fields of chemistry and chemical biology. Together, the conceptual novelty, the ability to pursue multiple complementary approaches at once, and the various potential applications will ensure high impact of this project in both the academic and industrial communities.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences basic medicine pharmacology and pharmacy pharmaceutical drugs
- natural sciences biological sciences biochemistry biomolecules
- natural sciences chemical sciences polymer sciences
- natural sciences chemical sciences catalysis
- natural sciences chemical sciences organic chemistry amines
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
28049 MADRID
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.