Project description
Removing the barriers that impede commercialisation of hydrogen technologies
EU-funded MultHyFuel will contribute to effective deployment of hydrogen by developing a common strategy for implementing hydrogen refuelling stations (HRS) in multi-fuel contexts. It will contribute to harmonisation of existing laws through practical, theoretical and experimental data and active and continuous engagement of stakeholders. Specifically, a state-of-the-art-review conducted with the support of the Network of National Experts will realise a preliminary diagnosis of the existing rules, and practical research and experimental laboratory work will address gaps in current understanding. Moreover, the project will generate best practice guidance on the basis of data and evidence derived from practical experimentation, engage key stakeholders (policy makers, public authorities, standardisation bodies) and ensure broader dissemination, communication, and exploitation of results.
Objective
According to market studies scouted within the HyLaw project, by 2050 hydrogen will represent 18% of the total worldwide energy consumption. This would decrease the amount of CO2 released in the atmosphere by 6 gigatons per year and create 30 million jobs within an industry worth 2.5 trillion dollars annually. Given the systemic role that hydrogen can fulfil in integrating all energy sectors (production, transmission, storage, distribution and consumption) and the central role hydrogen can play in decarbonising our society., The need for producing, storing and distributing hydrogen in high quantities and in new locations is growing rapidly. For more efficient and lower cost hydrogen distribution, hydrogen refuelling stations (HRS) can be integrated on already existing refuelling stations. In this context, the safety recommendations for including hydrogen in a multi-fuel refuelling stations requires in depth investigation. The aim of MultHyFuel project is to contribute to the effective deployment of hydrogen as an alternative fuel by developing a common strategy for implementing HRS in multifunctional contexts, contributing to harmonize laws and standards based on practical, theoretical and experimental data as well as on the active and continuous engagement of key stakeholders. To this purpose, the project will: 1) contribute to the existing knowledge base underpinning safety rules on hydrogen dispensing by providing experimental data from engineering research and smart mitigation measures/barriers; 2) define zoning thresholds and safety requirements (e.g. separation distances, validation of safety barriers, permitting and technological requirements) based on experimental and modelling approaches, 3) contribute to the harmonization of rules applicable to HRS co-located alongside other fuels by implementing an extensive cross-country assessment of the regulation in place, performing a gap analysis, and building relevant and efficient network of stakeholders.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering energy and fuels renewable energy hydrogen energy
- social sciences law
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.4. - SOCIETAL CHALLENGES - Smart, Green And Integrated Transport
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3.4.6. - FCH2 (transport objectives)
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-JTI-FCH-2020-1
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1000 Bruxelles / Brussel
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.