Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

COmbined suN-Driven Oxidation and CO2 Reduction for renewable energy storage

Descripción del proyecto

Nueva información sobre la energía solar

La producción de energía solar nos ayuda a reducir nuestra dependencia de los combustibles fósiles y a mitigar así el calentamiento global disminuyendo la emisión de gases de efecto invernadero. El proyecto CONDOR, financiado con fondos europeos, aborda ambos retos. Desarrollará un dispositivo modular para la producción de combustibles usando agua y CO2 como materia prima y luz solar como la única fuente de energía. El enfoque modular propuesto permitirá distintas configuraciones en función del producto diana. El proceso de oxidación no se limita a la producción de O2, sino que implica clorina y moléculas orgánicas pequeñas, como el ácido 2,5-furandicarboxílico. Los materiales utilizados se obtendrán de elementos químicos abundantes en la Tierra a través de rutas de baja temperatura/baja energía.

Objetivo

Conversion of sunlight into fuels and mitigation of anthropogenic climate change are big scientific challenges. CONDOR addresses both of them by developing highly efficient solar-driven conversion of CO2 into fuels and added-value chemicals. We propose a photosynthetic device made of two compartments (a) a photoelectrochemical cell that splits water and CO2 and generates oxygen and syngas, a mixture of H2 and CO; (b) a (photo)reactor that converts syngas into methanol and dimethylether (DME), via bi-functional heterogeneous catalysts. The proposed modular approach enables different configurations depending on the target product. The oxidation process is not limited to O2 production, but entails chlorine and small organic molecules, such as 2,5-furandicarboxylic acid, derived from the oxidation of low-cost and easily available precursors like salt water or alcohol derived biomass, respectively. Employed materials will be obtained through low energy/low temperature routes, mainly based on wet chemical procedures, such as sol-gel chemistry, mild hydrothermal processes, electrochemical processes at ambient temperature. Raw materials/precursors will not be limited by availability on a global scale, making use of organic species, silicon, earth abundant metal oxides, first row transition metals. The final target is a full photosynthetic device with 8% solar-to-syngas and 6% solar-to-DME efficiencies with three-months continuous outdoor operation. This represents a large progress with respect to the state of the art and requires an international collaboration and a multidisciplinary approach, which integrates expertise in nanomaterials preparation and characterisation by operando microscopy and spectroscopy, homogeneous and heterogeneous catalysis, photochemistry/photoelectrochemistry, PEC engineering and assessment of the environmental and socio-economic impact of the proposed technology, including life cycle assessment.

Convocatoria de propuestas

H2020-LC-SC3-2018-2019-2020

Consulte otros proyectos de esta convocatoria

Convocatoria de subcontratación

H2020-LC-SC3-2020-RES-RIA

Régimen de financiación

RIA - Research and Innovation action

Coordinador

ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA
Aportación neta de la UEn
€ 854 250,00
Dirección
VIA ZAMBONI 33
40126 Bologna
Italia

Ver en el mapa

Región
Nord-Est Emilia-Romagna Bologna
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 854 250,00

Participantes (10)