Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

COmbined suN-Driven Oxidation and CO2 Reduction for renewable energy storage

Descrizione del progetto

Gettare nuova luce sull’energia solare

La produzione di energia solare aiuta a ridurre la nostra dipendenza dai combustibili fossili e dunque a mitigare il riscaldamento globale, riducendo le emissioni di gas a effetto serra. Il progetto CONDOR, finanziato dall’UE, affronta entrambe queste sfide sviluppando un dispositivo modulare per la produzione di combustibili che si avvale di acqua e anidride carbonica come materie prime, e della luce solare come unica fonte di energia. L’approccio modulare proposto permetterà di attuare diverse configurazioni sulla base del prodotto da sviluppare. Il processo di ossidazione non si limita alla produzione di ossigeno, ma si estende anche al cloro e a piccole molecole organiche, come l’acido 2,5-furandicarbossilico. I materiali utilizzati verranno ricavati da elementi chimici abbondanti sulla Terra, attraverso processi a bassa energia e a basse temperature.

Obiettivo

Conversion of sunlight into fuels and mitigation of anthropogenic climate change are big scientific challenges. CONDOR addresses both of them by developing highly efficient solar-driven conversion of CO2 into fuels and added-value chemicals. We propose a photosynthetic device made of two compartments (a) a photoelectrochemical cell that splits water and CO2 and generates oxygen and syngas, a mixture of H2 and CO; (b) a (photo)reactor that converts syngas into methanol and dimethylether (DME), via bi-functional heterogeneous catalysts. The proposed modular approach enables different configurations depending on the target product. The oxidation process is not limited to O2 production, but entails chlorine and small organic molecules, such as 2,5-furandicarboxylic acid, derived from the oxidation of low-cost and easily available precursors like salt water or alcohol derived biomass, respectively. Employed materials will be obtained through low energy/low temperature routes, mainly based on wet chemical procedures, such as sol-gel chemistry, mild hydrothermal processes, electrochemical processes at ambient temperature. Raw materials/precursors will not be limited by availability on a global scale, making use of organic species, silicon, earth abundant metal oxides, first row transition metals. The final target is a full photosynthetic device with 8% solar-to-syngas and 6% solar-to-DME efficiencies with three-months continuous outdoor operation. This represents a large progress with respect to the state of the art and requires an international collaboration and a multidisciplinary approach, which integrates expertise in nanomaterials preparation and characterisation by operando microscopy and spectroscopy, homogeneous and heterogeneous catalysis, photochemistry/photoelectrochemistry, PEC engineering and assessment of the environmental and socio-economic impact of the proposed technology, including life cycle assessment.

Invito a presentare proposte

H2020-LC-SC3-2018-2019-2020

Vedi altri progetti per questo bando

Bando secondario

H2020-LC-SC3-2020-RES-RIA

Meccanismo di finanziamento

RIA - Research and Innovation action

Coordinatore

ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA
Contribution nette de l'UE
€ 854 250,00
Indirizzo
VIA ZAMBONI 33
40126 Bologna
Italia

Mostra sulla mappa

Regione
Nord-Est Emilia-Romagna Bologna
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 854 250,00

Partecipanti (10)