European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

COmbined suN-Driven Oxidation and CO2 Reduction for renewable energy storage

Description du projet

Faire la lumière sur l’énergie solaire

La production d’énergie solaire contribue à réduire notre dépendance aux énergies fossiles et à atténuer le réchauffement climatique en diminuant les émissions de gaz à effet de serre. Le projet CONDOR, financé par l’UE, relève ce double défi. Il développera un dispositif modulaire de production de carburants utilisant l’eau et le CO2 comme matière première et la lumière du soleil comme seule source d’énergie. L’approche modulaire proposée permettra différentes configurations en fonction du produit ciblé. Le processus d’oxydation ne se limite pas à la production d’O2, il implique du chlore et de petites molécules organiques comme l’acide 2,5-furandicarboxylique. Les matériaux utilisés seront obtenus à partir d’éléments chimiques abondants dans la terre par des voies à basse énergie/basse température.

Objectif

Conversion of sunlight into fuels and mitigation of anthropogenic climate change are big scientific challenges. CONDOR addresses both of them by developing highly efficient solar-driven conversion of CO2 into fuels and added-value chemicals. We propose a photosynthetic device made of two compartments (a) a photoelectrochemical cell that splits water and CO2 and generates oxygen and syngas, a mixture of H2 and CO; (b) a (photo)reactor that converts syngas into methanol and dimethylether (DME), via bi-functional heterogeneous catalysts. The proposed modular approach enables different configurations depending on the target product. The oxidation process is not limited to O2 production, but entails chlorine and small organic molecules, such as 2,5-furandicarboxylic acid, derived from the oxidation of low-cost and easily available precursors like salt water or alcohol derived biomass, respectively. Employed materials will be obtained through low energy/low temperature routes, mainly based on wet chemical procedures, such as sol-gel chemistry, mild hydrothermal processes, electrochemical processes at ambient temperature. Raw materials/precursors will not be limited by availability on a global scale, making use of organic species, silicon, earth abundant metal oxides, first row transition metals. The final target is a full photosynthetic device with 8% solar-to-syngas and 6% solar-to-DME efficiencies with three-months continuous outdoor operation. This represents a large progress with respect to the state of the art and requires an international collaboration and a multidisciplinary approach, which integrates expertise in nanomaterials preparation and characterisation by operando microscopy and spectroscopy, homogeneous and heterogeneous catalysis, photochemistry/photoelectrochemistry, PEC engineering and assessment of the environmental and socio-economic impact of the proposed technology, including life cycle assessment.

Appel à propositions

H2020-LC-SC3-2018-2019-2020

Voir d’autres projets de cet appel

Sous appel

H2020-LC-SC3-2020-RES-RIA

Coordinateur

ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA
Contribution nette de l'UE
€ 854 250,00
Adresse
VIA ZAMBONI 33
40126 Bologna
Italie

Voir sur la carte

Région
Nord-Est Emilia-Romagna Bologna
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 854 250,00

Participants (10)