Project description
Innovative gear designs keep gears turning smoothly even if lubrication is lost
Moving parts generate friction and heat. Lubricants are instrumental in reducing wear and, in the case of components like geared turbofans, catastrophic failures. While significant time and money are invested in developing gear designs to account for all foreseeable operating conditions, not all situations are foreseeable. The EU-funded LUBGEAR project will address this critical challenge through the design of gears that avoid catastrophic damage even in the event of loss of lubrication during 'off-design' conditions. The focus will be on designs that withstand double the load before mechanical abrasion occurs and reduce frictional losses by more than 50 % for a tremendous enhancement in behaviour under loss-of-lubrication conditions.
Objective
LUBGEAR aims at demonstrating gear design solutions which can withstand off-design conditions in geared turbofans without additional means (secondary/auxiliary lubrication). Those solutions combine 1) optimized gear geometry providing low power loss conditions; and 2) Surface and material combinations providing low friction. The solutions aim at reducing friction losses and frictional heat, leading to reduced temperatures and risk of scoring. This will allow producing gears which do not face catastrophic damage even under loss of lubrication in off-design conditions.
An investigation of new enabling technologies regarding off-design conditions will be carried out in simulation and experiment at contact level (TRL2). The combination of material systems (roughness, coating and hardening), contact load, sliding speed, rolling speed, lubricant type and lubricant supply will be considered through a Design of Experiments, allowing LUBGEAR to create a unique database and extend contact modelling tools.
Gear Design Optimisation takes into account the results from contact level and derives solutions coming from geometry, material systems, operating conditions and passive lubrication. A demonstration of the most promising design and technology solutions for gears will be validated in an experimental component test rig at TRL3 level. Gear modelling addresses the predictive design of off-design conditions.
LUBGEAR project gathers 4 strategic partners based on a multidisciplinary approach combining uniquely engineering, tribology, mechanics and advanced chemistry. This will allow developing a gear design with an increase of over 100 % in scoring load and a reduction of over 50 % of frictional losses resulting in remarkable improvements in loss of lubrication conditions. LUBGEAR will assess the benefits of different gear designs including gear geometry, new material systems and passive lubrication technologies in reaching the efficiency and load capacity required for gearboxes.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology mechanical engineering tribology lubrication
- natural sciences computer and information sciences databases
- engineering and technology materials engineering coating and films
- natural sciences mathematics pure mathematics geometry
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.4. - SOCIETAL CHALLENGES - Smart, Green And Integrated Transport
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3.4.5.1. - IADP Large Passenger Aircraft
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-CS2-CFP11-2020-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
20014 SAN SEBASTIAN
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.