European Commission logo
English English
CORDIS - EU research results
CORDIS

AI-driven mosquito surveillance and control through on-demand manufacturing and release of sterile male mosquitoes

Project description

Robots and sterile males are the future of pest control

Vector-borne diseases, such as malaria, are infections transmitted by infected mosquitoes and other arthropod species. In Europe, vector-borne diseases are widespread. This makes mosquito surveillance important for controlling outbreaks. However, current approaches require the manual identification of hundreds of insects to send them for pathogen analysis. To improve efficiency, the EU-funded RoboSIT project has developed a robot for this task. Specifically, it will enable mass-rearing factories and sex-sorting using artificial intelligence. Pathogen detection will then trigger the release of millions of sterile males that will mate with the females, which will no longer produce offspring. The aim is to phase out the use of highly hazardous pesticides.

Objective

Mosquitoes infect millions of people annually with disease such as malaria, dengue, zika and chikungunya. Meticulous mosquito surveillance is critical for controlling outbreaks, but today’s approaches are highly ineffective. Experts need to manually identify and pool hundreds of insects and send them for pathogen analysis. We have developed an AI-driven robot to do this task.
Vector control is commonly done using insecticides. 4,500 tonnes of DDT are still used every year to fight malaria due to the large unmet need in endemic areas. The insecticide-approach is unsustainable due to resistance, environmental contamination and severe impact on human health.
Our approach to vector control is to industrialize the most environment-friendly pest control method ever developed: the Sterile Insect Technique (SIT). SIT builds on the principle of releasing sterile insects in vast numbers, which mate with wild females, but do not give rise to offspring. Despite the great success that has been demonstrated using SIT in pilot studies, the technique is not scalable as sex-sorting of millions of insects is done manually. Consequently, the global impact of manual SIT is negligible. Our RoboSIT solution will encompass mass-rearing factories and sex-sorting using AI-driven robots. Pathogen detection will trigger the release of millions of sterile males in designated areas. Optimizing reaction times of outbreaks can save societies millions of € in healthcare cost. Bringing RoboSIT to market will incentivize the set-up of automated SIT facilities and reduce usage of insecticides.
We expect to launch RoboSIT in the EU and US in 2023 and generate revenues toward €49m 2 years later. We will expand to over 100 people in 5 years. Each new RoboSIT facility will generate 15 indirect jobs. Mosquito vector control is a stepping-stone for scaling into other vectors and pest. The potential of reducing pesticides in agriculture is huge; each year 2.5m tonnes of pesticides are used around the globe

Call for proposal

H2020-EIC-SMEInst-2018-2020

See other projects for this call

Sub call

H2020-EIC-SMEInst-2018-2020-4

Coordinator

SENECIO LTD
Net EU contribution
€ 1 401 487,00
Address
BIKAT HA'YAREACH 4A
4463107 Kfar Saba
Israel

See on map

SME

The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.

Yes
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost
€ 2 002 125,00