Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

POWERFUSE S: Fusing the gap between 3D-printing and Additive Manufacturing – the revolutionary manufacturing method for better products and a more sustainable future

Project description

Transitioning 3D printing into additive manufacturing

3D printing, particularly plastic 3D printing, has enormous potential and is garnering great interest in several sectors and fields. However, despite all its possibilities, current plastic 3D printing solutions provide rough, uneven surfaces that are matt, vulnerable to dirt and a hotbed for germs, while also being unappealing. The EU-funded Powerfuse S 4 AM project aims to overcome these issues by developing and introducing VaporFuse Surfacing. This environmentally clean physiochemical process smooths the surface. It also allows for water-repellent, airtight and glossy surfaces, can be wiped in the case of being used for food or medical applications, and enables 3D printing to transition into additive manufacturing.

Objective

Today, plastic 3D-printing cannot fully exploit its potential. The surface qualities do not meet the requirements of the
products. Rough surfaces, obtained on as-printed parts, are matt, susceptible to dirt, a breeding ground for germs and do not
exhibit an appealing appearance. This is where the Powerfuse S comes in. It enables a scalable surface smoothing of 3Dprinted
polymer parts by a stable, reproducible and environmentally friendly physio-chemical process, the so-called
VaporFuse Surfacing (VFS). Apart from optical advantages, the VFS treated parts offer smooth, water-repellent and glossy
surfaces. The parts have wipeable surfaces for food and medical applications, increased mechanical properties and scratch
resistance and assure water- and airtightness for carrying fluids or gases. VFS can substitute the extensive preparation for
subsequent spray coating and delivers powder residue-free parts for clean room applications. VFS challenges traditional
injection molding for the first time and enables 3D-printing to finally become Additive Manufacturing. Within this project, the
Powerfuse S is to be further developed into a large-scale, industry 4.0-ready sustainable system. The smoothing processes
are optimized and developed for other industry-relevant polymers. Parallel to the technical side, all legal, sales and
operational foundations are being laid to get this pioneering product to market. Automated post-processing of AM
parts is inevitable to fully exploit all advantages of AM like mass customization of complex products with reduced costs and
production times as well as a decrease of waste and scrap. It opens unprecedented
possibilities for the production of tomorrow and has the potential to disrupt whole industries. Especially the enablement of
on-site production and reducing complexity of global supply chains as well as enabling weight reduction in the aerospace industry through complex product design is a key enabler in saving energy and GHG emissions.

Call for proposal

H2020-EIC-SMEInst-2018-2020

See other projects for this call

Sub call

H2020-EIC-SMEInst-2018-2020-4

Coordinator

DYEMANSION GMBH
Net EU contribution
€ 1 498 404,00
Address
ROBERT KOCH STRASSE 1
82152 Planegg-Munich
Germany

See on map

SME

The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.

Yes
Region
Bayern Oberbayern München, Landkreis
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost
€ 2 140 577,14