Project description
Local monitoring system for healthier air
Ambient air pollution accounts for 4.2 million premature deaths per year due to stroke, heart disease, lung cancer and chronic respiratory diseases. Around 91 % of the world’s population lives in places where air quality levels exceed limits set by the World Health Organization. The EU-funded TRIAGE project will develop a cloud-connected, smart, photonic sensing system using the latest mid-infrared technology to monitor air pollution. The project’s new approach enables pervasive community-based sensing from a linked network of static and mobile detection units. The data will be automatically processed in real-time using machine learning algorithms to provide long-term concentration maps for many pollutant gases, as well as emergency warnings in the case of local hot spots.
Objective
Air pollution is one of the largest risk factors for premature death, yet current portable monitoring technology cannot provide adequate protection at a local community level.
• TRIAGE will develop a smart, compact and cost-effective air quality sensor network for the
hyperspectral detection of all relevant atmospheric pollution gases
• Resolution and selectivity are two orders of magnitude better than current solutions for lower cost
• Cloud-based, deep-learning algorithms enable automated short-term alerts and long-term trend analysis
• Community-based testing is agreed with Swedish and Swiss environmental agencies and transport companies
The sensor is based on an innovative, mid-IR supercontinuum laser providing ultra-bright emission from 2-10 µm in the infrared “fingerprint region.” The latest spectroscopic technology, including novel multi-pass cell and detectors, enables real-time detection of all major harmful gaseous components of air pollution with high sensitivity and selectivity, at levels far below the Immediate Danger to Life and Health (IDLH) concentrations. Precision multi-gas detection allows studies of synergistic effects from combinations of gases for the first time. In-built chemometric analysis and cloud connection will feed deep-learning algorithms and data storage to enable analysis ranging from long-term trends in air pollution to urgent local alerts.
This smart photonic approach enables pervasive community-based sensing, allowing inventories of emitted pollutants and identification of pollution hotspots. Agreements with local authorities in Stockholm and Neuchâtel for distributed pollution monitoring from municipal buildings and with local bus companies in Sweden and Switzerland for mobile validation are in place.
A comprehensive advisory board, TRIAGE-NET, ensures participation from end-users, large industrial players, environment agencies and local public communities. Outline business cases for commercialization are provided.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- natural sciences earth and related environmental sciences environmental sciences pollution
- natural sciences physical sciences optics laser physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
IA - Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-ICT-2018-20
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2800 Kongens Lyngby
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.