Skip to main content
European Commission logo print header

Fast Infrared Coherent Harmonic Microscopy

Project description

Advancing multiphoton microscopy for deeper and faster biomedical imaging

The development of new therapeutic strategies for different types of diseases requires dedicated instruments capable of encompassing biological problems in their entirety by monitoring them at all relevant length- and timescales. The EU-funded FAIR CHARM project aims at providing two complementary imaging solutions, SWIM and SLIDE, which transform the capacity to capture in real-time the biological processes as well as the cellular and extracellular structures involved in disease onset and progression. While the SWIM microscope uses novel laser sources in the infrared wavelength region around 1700 nm to penetrate deeper into biological tissue, the SLIDE microscope pushes the boundaries of fast multiphoton microscopy to imaging rates in excess of several thousand images per second.


The emergence of innovative research avenues in biomedicine in the last decades (cell therapy, cancer immunotherapy, bio-nanotechnology) has led to many proof-of-principle demonstrations fostering the hope for new therapeutic strategies for diseases. However, the translation from a laboratory bench into clinical practice has often proven unproductive. One of the reasons for this failure in translation is in the absence of imaging instruments capable of encompassing both the subcellular length-scale, where pathogenic disorders are set in, and that of tissues with differentiated cell types required to organize spatial and temporal functionality. An instrument enabling translation should allow resolving three-dimensional features within this large spatial range and operating with the same physical observables at each length scale, also enabling millisecond temporal resolution to monitor relevant processes. These requirements are essential to elucidate the hierarchical and temporal connections between micro and macro structures and events. Multiphoton microscopy has a yet undiscovered potential to fulfill these needs. FAIR CHARM aims at bringing this technique to its full capacity by i) providing access to millimetre imaging depths by building a microscope (SWIM) with excitation in the Short-Wave Infrared Region relying on new laser sources, optimized optics, and ad hoc labelling probes; ii) enabling unprecedented acquisition frame-rates (kHz/s) by the Spectro-temporal Laser Imaging by Diffracted Excitation (SLIDE) approach; iii) adapting Deep Learning recognition algorithms to multiphoton observables. The consortium features photonics innovators, worldwide renown enterprises in laser technology and microscopy, and clinical and biomedical end-users selected within the oncology/immunology, regenerative medicine, and neural signalling fields to provide the scientific push and timely feedback during the development of the final devices: SWIM and SLIDE.

Call for proposal


See other projects for this call

Sub call



Net EU contribution
€ 822 233,75
1211 Geneve

See on map

Schweiz/Suisse/Svizzera Région lémanique Genève
Activity type
Higher or Secondary Education Establishments
Total cost
€ 822 233,75

Participants (9)