Project description
New innovative AI tool adapted to energy
AI is becoming increasingly important in the energy sector, which is under pressure to meet the growing demand for renewable energy. AI-based analytics for smart energy management can help ensure a better balance between supply and demand. In this context, the EU-funded I-NERGY project will work to evolve, scale up and demonstrate innovative AI as a service energy analytics applications and digital twin services. These will be validated along pilots that span over the full energy value chain, ranging from optimised management of grid and non-grid renewable energy systems assets to improved efficiency and reliability of electricity networks’ operation.
Objective
AI spreading in the energy sector is expected to dramatically reshape energy value chain in the next years, by improving business processes performance, while increasing environmental sustainability, strengthening social relationships and propagating high social value among citizens. However, uncertain business cases, fragmented regulations, standards immaturity and low-technical SMEs workforce skills barriers are actually hampering the full exploitation of AI along the energy value chain. I-NERGY will deliver: (i) Financing support through Open Calls to third parties SMEs for new energy use cases and technology building blocks validation, as well as for developing new AI-based energy services, while fully aligning to AI4EU service requirements and strengthening the SME competitiveness on AI for energy; (b) An open modular framework for supporting AI-on-Demand in the energy sector by capitalising on state-of-the-art AI, IoT, semantics, federated learning, analytics tools, which leverage on edge-level AI-based cross-sector multi-stakeholder sovereignty and regulatory preserving interoperable data handling. I-NERGY aims at evolving, scaling up and demonstrating innovative AI-as-a-Service (AIaaS) Energy Analytics Applications and digital twins services that will be validated along 9 pilots, which: (a) Span over the full energy value chain, ranging from optimised management of grid and non-grid RES assets, improved efficiency and reliability of electricity networks operation, optimal risk assessment for energy efficiency investments planning, optimising local and virtual energy communities involvement in flexibility and green energy marketplaces; (b) Delivers other energy and non-energy services to realise synergies among energy commodities (district heating, buildings) and with non-energy sectors (i.e. e-mobility, personal safety/security, AAL), and with non- or low-technical domains end users (i.e. elderly people).
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences artificial intelligence
- natural sciences computer and information sciences internet internet of things
- engineering and technology environmental engineering energy and fuels renewable energy
- engineering and technology electrical engineering, electronic engineering, information engineering electrical engineering power engineering electric power distribution
- social sciences economics and business business and management employment
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
IA - Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-ICT-2018-20
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
106 82 ATHINA
Greece
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.