Project description
Extending the application of quantum mathematical descriptions to realistic physical models
The fields of mathematics and physics are significantly intertwined. Many of the developments in mathematics are adapted to describe physical systems. An important mathematical description of quantum systems, considered to be universal because it is independent of the physical details of the model apart from its basic symmetry type, emerged from the field of random matrix theory (RMT), and it has been used to model physical systems at all scales. The EU-funded RMTBEYOND project is taking a closer look at this quantum description and its application to physical models at all scales to explore how a broader physics implementation can be rigorously justified and RMT applied beyond the universality description.
Objective
Random matrix theory (RMT) was created in the 1950's by the pioneering idea of E. Wigner predicting that the distribution of the gaps between energy levels of complex quantum systems is universal in the sense that it is independent of the physical details of the model apart from its basic symmetry type. He proposed to study eigenvalues of large matrices with random entries as the fundamental model for his new universal statistics, later coined Wigner-Dyson-Mehta (WDM) universality. Mathematical research in RMT has largely been inspired by the WDM universality, specifically for Hermitian matrices in the mean-field regime. In physics, however, Wigner's vision has always been viewed from a higher perspective: random matrices are routinely used to model complex Hamilton operators for various observables on all scales. This project explores how this broader physics interpretation of RMT can be rigorously justified. We focus on three new directions.
First, we study Hermitian models beyond the conventional universality problem for eigenvalues and, among others, establish that Gaussian fluctuations prevail for most other physically relevant quantities such as multi-point Green functions or generic observables. In turn, these results help establish WDM universality for new ensembles that have previously not been accessible. Second, we develop the universality theory of non-Hermitian random matrices on all scales, leading to Gaussian Free Field on mesoscopic scales, and universality on microscopic scales. Third, we apply rigorous RMT to several key problems in disordered quantum systems, such as scattering theory in quantum dots and wires, fluctuation of density of states detecting the Anderson metal-insulator transition and the Sachdev-Ye-Kitaev model of fermions with random interactions.
The main impact of the project will be to establish the ubiquity of Gaussianity and to develop new mathematical tools to apply RMT to realistic physical models beyond WDM universality.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3400 KLOSTERNEUBURG
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.