CORDIS - EU research results

Molecular Spectra of Missing Ions in the Laboratory and in Space

Project description

High-precision spectroscopy of molecular ions

Star and planet formation is tightly connected to the presence and abundance of ion species. Ion spectroscopy serves as a probe for studying various astrophysical environments and how they evolve over time. However, the molecular spectra of most ions in space are unknown. The EU-funded MissIons project will use advanced methods of light-induced reactions in ion traps to record ion spectra from the microwave to the visible in high resolution. The methods will be many orders of magnitude more sensitive and less complex compared to conventional methods due to buffer gas cooling.


Ions play a key role in the chemical evolution of our universe. The process of star and planet formation is
tightly connected to the presence and abundance of these species. Their spectra turn into diagnostic tools for
various astrophysical environments and their temporal evolution. However, laboratory spectra of most ions
relevant to astrophysics are not available. Moreover, predicted spectra from ab-initio theory are not nearly
accurate enough to guide astrophysical searches. Therefore, corner stones for our understanding of chemistry
in the interstellar medium are missing. In sharp contrast, highly sensitive telescopes with large collection
areas are ready to find these species in space.

In order to make this important next step in molecular astrophysics I propose to record high-resolution
spectra from the microwave to visible range using our unique and innovative light induced reactions (LIR)
methods in ion traps. It is molecule specific through mass selection, many orders of magnitude more
sensitive and less complex due to buffer gas cooling as compared to conventional methods.

High-resolution spectroscopy is the most accurate discipline in quantitative sciences and for molecules it is
linked to highly accurate molecular structures, bond lengths and angles. But this fundamental concept is put
into question for very floppy molecules, e.g. protonated methane, one of the key missing ions in space.
Therefore, also new models describing the structure and internal dynamics of molecules shall be developed
in this interdisciplinary project.

Based on the laboratory spectroscopy in this project new molecules will be found in space. We shall unravel
the role of the most important missing ions which will have great impact on the interpretation of
astrophysical observations. At the same time understanding the spectra of the missing ions will challenge the
current concept of molecular structure and thus lead to an advancement of molecular physics as a whole.

Host institution

Net EU contribution
€ 2 499 480,00
50931 Koln

See on map

Nordrhein-Westfalen Köln Köln, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Total cost
€ 2 499 480,00

Beneficiaries (1)